Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Để pt \(x^2-2(m-1)x+m^2-2m=0\) có hai nghiệm thì:
\(\Delta'=(m-1)^2-(m^2-2m)>0\Leftrightarrow 1>0\) (luôn đúng với mọi m)
Khi đó áp dụng hệ thức Viete với $x_1,x_2$ là hai nghiệm của phương trình thì:
\(\left\{\begin{matrix} x_1+x_2=2(m-1)\\ x_1x_2=m^2-2m\end{matrix}\right.\)
\(\Rightarrow (x_1+x_2)^2-2x_1x_2=4(m-1)^2-2(m^2-2m)\)
\(\Leftrightarrow x_1^2+x_2^2=2m^2-4m+4\)
\(\Leftrightarrow 8=2m^2-4m+4\Leftrightarrow m^2-2m-2=0\)
\(\Leftrightarrow m=1\pm \sqrt{3}\)
\(\left\{{}\begin{matrix}m\ne0\\\Delta'>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne0\\m< 1\end{matrix}\right.\)
Khi đó \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m+2}{m}\\x_1x_2=\dfrac{m+3}{m}\end{matrix}\right.\)
\(x_1^3+x_2^3-2\left(x_1+x_2\right)=0\Leftrightarrow\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-3x_1x_2\right)-2\left(x_1+x_2\right)=0\)
\(\Leftrightarrow\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-3x_1x_2-2\right)=0\)
TH1: \(x_1+x_2=0\Leftrightarrow\dfrac{2\left(m+1\right)}{m}=0\Rightarrow m=-1\)
TH2: \(\left(x_1+x_2\right)^2-3x_1x_2-2=0\Leftrightarrow\left(\dfrac{2m+2}{m}\right)^2-\dfrac{3m+9}{m}-2=0\)
\(\Leftrightarrow m^2+m-4=0\Rightarrow\left[{}\begin{matrix}m=\dfrac{-1-\sqrt{17}}{2}\\m=\dfrac{-1+\sqrt{17}}{2}\left(l\right)\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}m=-1\\m=\dfrac{-1-\sqrt{17}}{2}\end{matrix}\right.\)
a: Thay x=-1 và y=3 vào (d), ta được:
-2-m+1=3
=>-1-m=3
=>-m=4
hay m=-4
b: PTHĐGĐ là:
\(\dfrac{1}{2}x^2-2x+m-1=0\)
\(\Leftrightarrow x^2-4x+2m-2=0\)
\(\text{Δ}=\left(-4\right)^2-4\left(2m-2\right)\)
\(=16-8m+8=-8m+24\)
Để (d) cắt (P) tại hai điểm phân biệt thì -8m+24>0
hay m<3
Theo Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=2m-2\end{matrix}\right.\)
Theo đề, ta có: \(x_1\cdot x_2\left(x_1^2+x_2^2\right)=-48\)
=>\(\Leftrightarrow\left(2m-2\right)\cdot\left[4^2-2\left(2m-2\right)\right]=-48\)
\(\Leftrightarrow\left(m-1\right)\left(16-4m+4\right)=-24\)
\(\Leftrightarrow\left(m-1\right)\left(-4m+20\right)=-24\)
\(\Leftrightarrow\left(m-1\right)\left(m-5\right)=6\)
\(\Leftrightarrow m^2-6m-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=3+\sqrt{10}\left(loại\right)\\m=3-\sqrt{10}\left(nhận\right)\end{matrix}\right.\)
\(\Delta'=m^2-m^2+m-1=m-1\ge0\Rightarrow m\ge1\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-m+1\end{matrix}\right.\)
\(S=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=4m^2-2\left(-m+1\right)\)
\(=4m^2+2m+1\)
Xét \(f\left(m\right)=4m^2+2m+1\) trên \([1;+\infty)\)
\(a=4>0\) ; \(-\frac{b}{2a}=-\frac{1}{4}< 1\Rightarrow f\left(m\right)\) đồng biến trên \([1;+\infty)\)
\(\Rightarrow S_{min}=f\left(m\right)_{min}=f\left(1\right)=7\)
\(\Delta=b^2-4ac\)
\(\Delta=\left(3m-2\right)^2-4.2.\left(2m-5\right)=9m^2-12m+4-16m+40\)
\(\Delta=9m^2-28m+44\)
Để pt có 2 nghiệm phân biệt \(\Leftrightarrow\Delta\ge0\Leftrightarrow9m^2-28m+44\ge0\left(lđ\right)\)
theo vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{b}{a}=\dfrac{3m-2}{2}\left(1\right)\\x_1.x_2=-\dfrac{c}{a}=\dfrac{5-2m}{2}\left(2\right)\end{matrix}\right.\)
ta có \(3x_1+2x_2=0\left(3\right)\)
từ (1)(3) ta có hệ
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{3m-2}{2}\\3x_1+2x_2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x_1+2x_2=3m-2\\3x_1+2x_2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=2-3m\\x_2=-\dfrac{3}{2}x_1\end{matrix}\right.\)(lấy dưới trừ trên)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=2-3m\\x_2=-\dfrac{3}{2}\left(2-3m\right)\end{matrix}\right.\)
ta có \(x_1.x_2=\dfrac{5-2m}{2}\)
\(\Leftrightarrow-\dfrac{3}{2}\left(2-3m\right)\left(2-3m\right)=\dfrac{5-2m}{2}\)
\(\Leftrightarrow-3\left(9m^2-12m+4\right)=5-2m\)
\(\Leftrightarrow-27m^2+36m-12=5-2m\)
\(\Leftrightarrow-27m^2+38m-17=0\) ( vô lý)
vậy pt vô nghiệm
\(\left|x_1-x_2\right|=2\sqrt{2}\Rightarrow x_1^2-2x_1x_2+x_2^2=8\Rightarrow\left(x_1+x_2\right)^2-4x_1x_2=8\) (1)
Để (P) cắt Ox tại 2 điểm thì phương trình \(mx^2-2\left(m+1\right)x+m+3=0\) có hai nghiệm phân biệt
\(\Rightarrow m\ne0\) và \(\Delta'=\left(m+1\right)^2-m\left(m+3\right)=1-m>0\Rightarrow m< 1;m\ne1\)
Theo Viet:\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m+2}{m}\\x_1x_2=\dfrac{m+3}{m}\end{matrix}\right.\)
Thế vào (1):
\(\left(\dfrac{2m+2}{m}\right)^2-4\left(\dfrac{m+3}{m}\right)=8\Leftrightarrow2m^2+m-1=0\) \(\Rightarrow\left[{}\begin{matrix}m=-1\\m=\dfrac{1}{2}\end{matrix}\right.\)
Ghi nhầm điều kiện xíu, cuối dòng 3 là \(m\ne0\) nhé, mình gõ nhầm số 1 vào
Để pt có 2 nghiệm trái dấu \(\Leftrightarrow ac< 0\Rightarrow m^2-3< 0\Rightarrow-\sqrt{3}< m< \sqrt{3}\)
\(\Delta=m^2-4\left(m^2-3\right)=12-3m^2\ge0\Rightarrow m^2\le4\)
Khi đó theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m^2-3\end{matrix}\right.\)
\(\Rightarrow A=\left|x_1^2+x_2^2-x_1x_2\right|=\left|\left(x_1+x_2\right)^2-3x_1x_2\right|\)
\(A=\left|m^2-3\left(m^2-3\right)\right|=\left|9-2m^2\right|=9-2m^2\le9\)
\(\Rightarrow A_{max}=9\) khi \(m=0\)
Bài 2:
a: \(\text{Δ}=\left(4m+2\right)^2-4\left(4m+3\right)\)
\(=16m^2+16m+4-16m-12=16m^2-8\)
Để phương trình có hai nghiệm thì \(2m^2>=1\)
=>\(\left[{}\begin{matrix}m>=\dfrac{1}{\sqrt{2}}\\m< =-\dfrac{1}{\sqrt{2}}\end{matrix}\right.\)
c: \(A=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\)
\(=\left(4m+2\right)^3-3\cdot\left(4m+3\right)\left(4m+2\right)\)
\(=64m^3+96m^2+48m+8-3\left(16m^2+20m+6\right)\)
\(=64m^3+96m^2+48m+8-48m^2-60m-18\)
\(=64m^3+48m^2-12m-10\)