Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x<y⇔a/m<b/m⇔a<bx(1)
Từ (1), Suy ra:
a<b⇔a+a<b+a⇔2a<a+b(2)
a<b⇔a+b<b+b⇔a+b<2b(3)
Từ (2);(3), ta có:
2a<a+b<2b⇔2a/2m<a+b/2m<2b/2m
⇔x<z<y(đpcm)
Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y
Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y
Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y
Vì x < y nên \(\frac{a}{m}< \frac{b}{m}\) suy ra a < b
=> a + b > 2a => \(z=\frac{a+b}{2m}>\frac{2a}{2m}=\frac{a}{m}=x\) (1)
Từ a < b => a + b < 2b => \(z=\frac{a+b}{2m}< \frac{2b}{2m}=\frac{b}{m}=y\) (2)
Từ (1) ; (2) => x < z < y (đpcm)
Ta có x = \(\frac{2a}{2m}\)< \(\frac{a+b}{2m}\)= z
y = \(\frac{2b}{2m}\)> \(\frac{a+b}{2m}\)= z
Do x < y => a/m < b/m
=> a/m + a/m < a/m + b/m < b/m + b/m
=> 2x < a+b/m < 2y
=> x < a+b/m : 2 < 2y
=> x < a+b/m . 1/2 < y
=> x < a+b/2m < y
Chứng tỏ ...
Bài làm
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Theo đề bài ta có x = \(\frac{a}{m}\) , y = \(\frac{b}{m}\)( a, b, m \(\in\) Z, m > 0 )
Vì x < y nên ta suy ra a < b
Ta có : x = \(\frac{2a}{2m}\), y = \(\frac{2b}{2m}\), , z = \(\frac{a+b}{2m}\)
Vì a < b => a + a < a +b => 2a < a + b
Do 2a< a +b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a+b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z< y
Ta có x < y
=> x + x < y + x
=> \(\frac{2a}{m}<\frac{a+b}{m}\)
=> 2a < a + b
Mà x = \(\frac{a}{m}\)=\(\frac{2a}{2m}\)
y = \(\frac{b}{m}\)= \(\frac{2b}{2m}\)
Theo giả thuyết trên
=> 2a < a + b < 2b
=> \(\frac{2a}{2m}<\frac{a+b}{2m}<\frac{2b}{2m}\)
=> x < z < y (Đpcm)
x=a/m, y=b/m (a, b, m thuộc Z, m>0) và x<y nên suy ra a<b
x<z <=> x=a/m < a+b/2m
<=> 2a < a+b (vì m nguyên và >0)
<=> a< b điều này đúng (suy ra ở trên)
z<y <=> y=b/m > a+b/2m
<=> 2b > a+b (vì m nguyên và >0)
<=> b > a điều này đúng (suy ra ở trên)
chúc bạn học tốt