K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2021

bài này

nhìn

trông có vẻ hơi khó...

10 tháng 7 2021

bài này hết sức đơn giản, hơn nữa nó cũng có trong sách những viên kim cương của trần phương

16 tháng 6 2016

ĐKXĐ: a > 0

a/ \(K=\left[\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right]:\left[\frac{1}{\sqrt{a}-1}+\frac{2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right]\)

       \(=\left[\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right]:\left[\frac{\sqrt{a}+3}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right]\)

        \(=\left[\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}\right].\left[\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}+3}\right]\)  \(=\frac{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}+3\right)}\)

b/ Ta có: \(\sqrt{a}=\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)

     \(K=\frac{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}+3\right)}=\frac{\left(\sqrt{2}+2\right)\sqrt{2}}{\left(\sqrt{2}+1\right)\left(\sqrt{2}+4\right)}=\frac{2\left(\sqrt{2}+1\right)}{\sqrt{2}\left(\sqrt{2}+1\right)\left(2\sqrt{2}+1\right)}\)

            \(=\frac{\sqrt{2}}{2\sqrt{2}+1}\)

c/ \(K< 0\Leftrightarrow\frac{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}+3\right)}< 0\)\(\Rightarrow\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)< 0\)

       \(\Rightarrow\sqrt{a}-1< 0\) (vì \(\left(\sqrt{a}+1\right)^2>0\))    \(\Rightarrow\sqrt{a}< 1\Rightarrow a< 1\)

               Vậy \(0< a< 1\) thì K < 0

4 tháng 4 2020

Bài 1 :

a) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}\)

\(A=\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)

\(\Leftrightarrow A=\frac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}:\frac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(\Leftrightarrow A=\frac{1}{\sqrt{x}+1}:\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(\Leftrightarrow A=\frac{1}{\sqrt{x}+1}:\frac{1}{\sqrt{x}-2}\)

\(\Leftrightarrow A=\frac{\sqrt{x}-2}{\sqrt{x}+1}\)

b) Để \(A< -1\)

\(\Leftrightarrow\frac{\sqrt{x}-2}{\sqrt{x}+1}< -1\)

\(\Leftrightarrow\sqrt{x}-2< -\sqrt{x}-1\)

\(\Leftrightarrow2\sqrt{x}< 1\)

\(\Leftrightarrow\sqrt{x}< \frac{1}{2}\)

\(\Leftrightarrow x< \frac{1}{4}\)

Vậy để \(A< -1\Leftrightarrow x< \frac{1}{4}\)

20 tháng 5 2019

a) Bất đẳng thức đúng khi a = b = 2c

do đó \(\sqrt{c\left(2c-c\right)}+\sqrt{c\left(2c-c\right)}\le n\sqrt{2c.2c}\Leftrightarrow n\ge1\)

xảy ra khi n = 1

Thật vậy, ta có :

\(\sqrt{\frac{c}{b}.\frac{a-c}{a}}+\sqrt{\frac{c}{a}.\frac{b-c}{b}}\le\frac{1}{2}\left(\frac{c}{b}+\frac{a-c}{a}+\frac{c}{a}+\frac{b-c}{b}\right)\)

\(\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)

Vậy n nhỏ nhất là 1

b) Ta có : a + b = \(\sqrt{\left(a+b\right)^2}\le\sqrt{\left(a+b\right)^2+\left(a-b\right)^2}=\sqrt{2\left(a^2+b^2\right)}\)

Áp dụng, ta được : \(\sqrt{1}+\sqrt{n}\le\sqrt{2\left(n+1\right)},\sqrt{2}+\sqrt{n-1}\le\sqrt{2\left(1+n\right)},...\)

\(\sqrt{n}+\sqrt{1}\le\sqrt{2\left(1+n\right)};\sqrt{n-1}+\sqrt{2}\le\sqrt{2\left(1+n\right)},...\)

\(\sqrt{1}+\sqrt{n}\le\sqrt{2\left(1+n\right)}\)

do đó : \(4\left(\sqrt{1}+\sqrt{2}+...+\sqrt{n}\right)\le2n\sqrt{2\left(1+n\right)}\)

\(\Rightarrow\sqrt{1}+\sqrt{2}+...+\sqrt{n}\le n\sqrt{\frac{n+1}{2}}\)

29 tháng 7 2016

a, Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y.\)Bất đẳng thức ban đầu trở thành: \(\frac{2x^2y^2}{x^2+y^2}\le xy.\)

ta có : \(x^2+y^2\ge2xy\Rightarrow\frac{2x^2y^2}{x^2+y^2}\le\frac{2x^2y^2}{2xy}=xy.\)(đpcm ) 

dấu " = " xẩy ra khi x = y > 0 

vậy bất đăng thức ban đầu đúng. dấu " = " xẩy ra khi a = b >0