K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2020

Theo định lý Viéte kết hợp với giả thiết ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}>0\\x_1x_2=\frac{c}{a}>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}ab< 0\\ac>0\end{matrix}\right.\)

Ta cần chứng minh: \(\left\{{}\begin{matrix}x_3+x_4=\frac{-b}{c}>0\\x_3x_4=\frac{a}{c}>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}bc< 0\\ac>0\end{matrix}\right.\) (*)

TH1: \(a>0\Leftrightarrow\left\{{}\begin{matrix}c>0\\b< 0\end{matrix}\right.\) \(\Leftrightarrow\) (*) luôn đúng

TH2: \(a< 0\Leftrightarrow\left\{{}\begin{matrix}c< 0\\b>0\end{matrix}\right.\) \(\Leftrightarrow\) (*) luôn đúng

Ta có đpcm.

Áp dụng BĐT Cauchy:

\(x_1+x_2+x_3+x_4\ge4\sqrt[4]{x_1x_2x_3x_4}=4\sqrt[4]{\frac{c}{a}\cdot\frac{a}{c}}=4\)

Dấu "=" xảy ra khi \(x_1=x_2=x_3=x_4\) \(\Leftrightarrow a=c\)

NV
8 tháng 5 2020

\(ax^2+bx+c=0\) (1) có 2 nghiệm dương \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=b^2-4ac\ge0\\x_1+x_2=-\frac{b}{a}>0\\x_1x_2=\frac{c}{a}>0\end{matrix}\right.\)

Xét \(cx^2+bx+a=0\) (2)

\(\Delta=b^2-4ac\ge0\Rightarrow\left(2\right)\) có 2 nghiệm

\(\left\{{}\begin{matrix}x_3+x_4=-\frac{b}{c}\\x_3x_4=\frac{a}{c}>0\end{matrix}\right.\)

Do \(\left\{{}\begin{matrix}-\frac{b}{a}>0\\\frac{c}{a}>0\end{matrix}\right.\) \(\Rightarrow\left(-\frac{b}{a}\right):\left(\frac{c}{a}\right)>0\Rightarrow-\frac{b}{c}>0\)

\(\Rightarrow\) (2) cũng có 2 nghiệm dương

Do \(\left\{{}\begin{matrix}-\frac{b}{a}>0\\\frac{c}{a}>0\end{matrix}\right.\) \(\Rightarrow a;c\) cùng dấu và trái dấu b

Ko mất tính tổng quát, giả sử \(a;c>0\)\(b< 0\) ; đặt \(d=-b>0\)

\(\Rightarrow d^2\ge4ac\Rightarrow d\ge2\sqrt{ac}\)

\(A=x_1+x_2+x_3+x_4=-\frac{b}{a}-\frac{b}{c}=\frac{d}{a}+\frac{d}{c}=d\left(\frac{1}{a}+\frac{1}{c}\right)\)

\(A\ge2d\sqrt{\frac{1}{ac}}\ge2.2\sqrt{ac}.\sqrt{\frac{1}{ac}}=4\) (đpcm)

Dấu "=" xảy ra khi \(a=c=\frac{1}{2}d\) hay \(a=c=-\frac{1}{2}b\)

17 tháng 6 2016
a) ax^2 + bx + c = 0 Để phương trình thỏa mãn điều kiện có 2 nghiệm dương phân biệt. ∆ > 0 => b^2 - 4ac > 0 x1 + x2 = -b/a > 0 => b và a trái dấu x1.x2 = c/a > 0 => c và a cùng dấu Từ đó ta xét phương trình cx^2 + bx^2 + a = 0 ∆ = b^2 - 4ac >0 x3 + x4 = -b/c, vì a và c cùng dấu mà b và a trái dấu nên b và c trái dấu , vì vậy -b/c >0 x3.x4 = a/c, vì a và c cùng dấu nên a/c > 0 => phương trình cx^2 + cx + a có 2 nghiệm dương phân biệt x3 và x4 Vậy nếu phương trình ax^2 + bx + c = 0 có 2 nghiệm dương phân biệt thì phương trình cx^2 + bx + a = 0 cũng có 2 nghiệm dương phân biệt. b) Ta có, vì x1, x2, x3, x4 không âm, dùng cô si. x1 + x2 ≥ 2√( x1.x2 ) x3 + x4 ≥ 2√( x3x4 ) => x1 + x2 + x3 + x4 ≥ 2[ √( x1.x2 ) + √( x3x4 ) ] (#) Tiếp tục côsi cho 2 số không âm ta có √( x1.x2 ) + √( x3x4 ) ≥ 2√[√( x1.x2 )( x3.x4 ) ] (##) Theo a ta có x1.x2 = c/a x3.x4 = a/c => ( x1.x2 )( x3.x4 ) = 1 => 2√[√( x1.x2 )( x3.x4 ) ] = 2 Từ (#) và (##) ta có x1 + x2 + x3 + x4 ≥ 4
15 tháng 6 2015

1, thay m=-2 vào giải chắc bạn làm đc nếu k liên hệ mình giải cho

b, giải sử pt có 2 nghiệm pb, áp dụng hệ thức vi ét ta có: \(x1+x2=2m+2\)\(x1.x2=m-2\Leftrightarrow2.x1.x2=2m-4\)

=> \(x1+x2-2.x1.x2=2m+2-2m+4=6\)=> hệ thức liên hệ k phụ thuộc vào m

2) \(\Delta=4\left(m-3\right)^2+4>0\) với mọi m=> pt luôn có 2 nghiệm pb

áp dụng hệ thức vi ét ta có: \(x1+x2=2m-6\)\(x1.x2=-1\)

câu này bạn xem có sai đề k. loại bài toán áp dụng hệ thức vi ét này k bao giờ có đề là x1-x2 đâu nha

sửa đề rồi liên hệ để mình làm tiếp nha

 

a: \(\text{Δ}=\left(m-5\right)^2-4\left(-m+6\right)\)

\(=m^2-10m+25+4m-24\)

\(=m^2-6m+1=\left(m-3\right)^2-8\)

Để phương trình có hai nghiệm thì \(\left(m-3\right)^2>=8\)

\(\Leftrightarrow\left[{}\begin{matrix}m>=2\sqrt{2}+3\\m< =-2\sqrt{2}+3\end{matrix}\right.\)

Theo đề, ta có: \(\left\{{}\begin{matrix}2x_1+3x_2=13\\x_1+x_2=m-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1+3x_2=13\\2x_1+2x_2=2m-10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=13-2m+10=-2m+25\\x_1=m-5+2m-25=3m-30\end{matrix}\right.\)

Ta có: \(x_1x_2=-m+6\)

\(\Leftrightarrow\left(2m-25\right)\left(3m-30\right)=m-6\)

\(\Leftrightarrow6m^2-60m-75m+750-m+6=0\)

\(\Leftrightarrow6m^2-136m+756=0\)

hay \(m\in\left\{\dfrac{34+\sqrt{22}}{3};\dfrac{34-\sqrt{22}}{3}\right\}\)

b: \(x_1+x_2+x_1x_2-11=0\)

\(\Leftrightarrow m-5-m+6-11=0\)

=>-12=0(vô lý)

23 tháng 6 2017

nhầm là x41+x42+x43+x44=68. giúp mình với

AH
Akai Haruma
Giáo viên
1 tháng 3 2017

Lời giải:

a) Gọi nghiệm chung của hai PT là \(a\). Có nghiệm chung nghĩa là PT

\(a^2+ma+2-(a^2+2a+m)=0\) phải có nghiệm

\(\Leftrightarrow (a-1)(m-2)=0\)

Do đó nếu hai PT có nghiệm chung thì nghiệm đó là \(a=1\)

Thay vào \(\Rightarrow m+3=0\Rightarrow m=-3\)

b) Để PT \((x^2+mx+2)(x^2+2x+m)=0\) có bốn nghiệm phân biệt thì mỗi PT bậc hai trên phải có hai nghiệm pb.

Trước tiên phải xác định điều kiện có nghiệm\( \left\{\begin{matrix} \Delta _1=m^2-8>0\\ \Delta _2=4-4m>0\end{matrix}\right.\Rightarrow m<-\sqrt{8}\)

PT đã cho không có có bốn nghiệm phân biệt tức là \(x^2+mx+2=0\)\(x^2+2x+m=0\) không có nghiệm chung, tức là \(m\neq -3\)

Vậy \(\left\{\begin{matrix}m< -\sqrt{8}\\m\ne-3\end{matrix}\right.\)

c) Theo Viet có \(\left\{\begin{matrix} x_1+x_2=-m\\ x_1x_2=2\end{matrix}\right.+\left\{\begin{matrix} x_3+x_4=-2\\ x_3x_4=m\end{matrix}\right.\)

\(\Rightarrow E=x_1^2+x_2^2+x_3^2+x_4^2=m^2-4+4-2m=m^2-2m=(m-1)^2-1\geq -1\)

Vậy \(E_{\min}=-1\Leftrightarrow m=1\)

14 tháng 4 2018

a, Đặt x2=t(t≥0)x2=t(t≥0)

x4−2mx2+2m−1=0x4−2mx2+2m−1=0

⟺t2−2mt+2m−1=0⟺t2−2mt+2m−1=0 (**)

Để phương trình có 4 nghiệm phân biệt thì Δ′>0⟺m2−2m+1>0⟺(m−1)2>0⟺m≠1Δ′>0⟺m2−2m+1>0⟺(m−1)2>0⟺m≠1 (1)

{t1t2=2m−1>0t1+t2=2m>0 (∗){t1t2=2m−1>0t1+t2=2m>0 (∗)

⟺m>12⟺m>12 (2)

Phương trình bậc 4 trùng phương thì có 4 nghiệm trong đó có 2 cặp nghiệm là số đối của nhau.

x1<x2<x3<x4→{x1=−x4x2=−x3x1<x2<x3<x4→{x1=−x4x2=−x3

x4−x3=x3−x2→x4=3x3x4−x3=x3−x2→x4=3x3

TT: x1=3x2x1=3x2

→x1.x4=9x2.x3→t1=9t2→x1.x4=9x2.x3→t1=9t2 ( với t1;t2t1;t2 là 2 nghiệm của pt(**))

Đến đây thay vào (*) bên trên ta được hệ:

⟺{9t22=2m−15t2=m⟺{9t22=2m−15t2=m

→9(2)2−25(1)⟺9m2−50m+25=0⟺(9m−5)(m−5)=0→9(2)2−25(1)⟺9m2−50m+25=0⟺(9m−5)(m−5)=0

⟺m=59⟺m=59 v m=5m=5 (cả 2 đều thỏa mãn)

∙∙ Với m=59⟺x=±1m=59⟺x=±1 v x=±13x=±13

∙∙ Với m=5⟺x=±1m=5⟺x=±1 v x=±3

13 tháng 2 2016

 ax^2 + bx + c = 0 

Để phương trình thỏa mãn điều kiện có 2 nghiệm dương phân biệt. 

∆ > 0 
=> b^2 - 4ac > 0 

x1 + x2 = -b/a > 0 
=> b và a trái dấu 

x1.x2 = c/a > 0 
=> c và a cùng dấu 

Từ đó ta xét phương trình cx^2 + bx^2 + a = 0 

∆ = b^2 - 4ac >0 

x3 + x4 = -b/c, vì a và c cùng dấu mà b và a trái dấu nên b và c trái dấu , vì vậy -b/c >0 

x3.x4 = a/c, vì a và c cùng dấu nên a/c > 0 

=> phương trình cx^2 + cx + a có 2 nghiệm dương phân biệt x3 và x4 

Vậy nếu phương trình ax^2 + bx + c = 0 có 2 nghiệm dương phân biệt thì phương trình cx^2 + bx + a = 0 cũng có 2 nghiệm dương phân biệt. 

Ta có, vì x1, x2, x3, x4 không âm, dùng cô si. 

x1 + x2 ≥ 2√( x1.x2 ) 
x3 + x4 ≥ 2√( x3x4 ) 

=> x1 + x2 + x3 + x4 ≥ 2[ √( x1.x2 ) + √( x3x4 ) ] (#) 

Tiếp tục côsi cho 2 số không âm ta có 

√( x1.x2 ) + √( x3x4 ) ≥ 2√[√( x1.x2 )( x3.x4 ) ] (##) 

Theo a ta có 

x1.x2 = c/a 
x3.x4 = a/c 

=> ( x1.x2 )( x3.x4 ) = 1 

=> 2√[√( x1.x2 )( x3.x4 ) ] = 2 

Từ (#) và (##) ta có 

x1 + x2 + x3 + x4 ≥ 4

13 tháng 2 2016

umk bài này về vi-ét mà ban