K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2020

Từ pt ta có: \(-\left(1+x^4\right)=\text{ax}^3+bx^2+cx\)

Áp dụng BĐT B.C.S:

\(\left(1+x^4\right)^2=\left(\text{ax}^3+bx^2+cx\right)^2\le\left(a^2+b^2+c^2\right)\left(x^6+x^4+x^2\right)\)\(\Rightarrow\left(a^2+b^2+c^2\right)\ge\frac{\left(1+x^4\right)^2}{x^6+x^4+x^2}\left(1\right)\)

Mặt khác: \(\frac{\left(1+x^4\right)^2}{x^6+x^4+x^2}\ge\frac{4}{3}\left(2\right)\)

Thật vậy: \(\left(2\right)\Leftrightarrow3\left(1+2x^4+x^8\right)\ge4\left(x^6+x^4+x^2\right)\)

\(\Leftrightarrow3x^8-4x^6+2x^4-4x^2+3\ge0\)

\(\Leftrightarrow\left(x^2-1\right)^2\left(3x^4+2x^2+3\right)\ge0\)(luôn đúng)

Từ 1 và 2 : \(a^2+b^2+c^2\ge\frac{4}{3}\)

Dấu '=' xảy ra khi và chỉ khi \(\orbr{\begin{cases}a=b=c=\frac{2}{3}\left(x=1\right)\\a=b=c=\frac{-2}{3}\left(x=-1\right)\end{cases}}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Mệnh đề \(P \Rightarrow Q\): “Nếu phương trình bậc hai \(a{x^2} + bx + c = 0\) có hai nghiệm phân biệt thì phương trình bậc hai \(a{x^2} + bx + c = 0\) có biệt thức \(\Delta  = {b^2} - 4ac\;\, > 0\).”

Mệnh đề \(Q \Rightarrow P\): “Nếu phương trình bậc hai \(a{x^2} + bx + c = 0\) có biệt thức \(\Delta  = {b^2} - 4ac\;\, > 0\) thì phương trình bậc hai \(a{x^2} + bx + c = 0\) có hai nghiệm phân biệt.”

1 tháng 4 2017

Giải bài 3 trang 160 SGK Đại Số 10 | Giải toán lớp 10

Giải bài 3 trang 160 SGK Đại Số 10 | Giải toán lớp 10

8 tháng 2 2019

sao bạn tính được x2 = 2(m+1) vậy mình chưa hiểu

NV
29 tháng 2 2020

Coi như các điều kiện có nghiệm đều thỏa mãn

Theo định lý Viet \(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}\\x_1x_2=\frac{c}{a}\end{matrix}\right.\)

Giả sử pt bậc 2 nhận \(\frac{1}{x_1};\frac{1}{x_2}\) là nghiệm có dạng \(x^2-Ax+B=0\)

\(\left\{{}\begin{matrix}\frac{1}{x_1}+\frac{1}{x_2}=A\\\frac{1}{x_1x_2}=B\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A=\frac{x_1+x_2}{x_1x_2}=\frac{-\frac{b}{a}}{\frac{c}{a}}=-\frac{b}{c}\\B=\frac{1}{x_1x_2}=\frac{a}{c}\end{matrix}\right.\)

Vậy pt đó có dạng: \(x^2+\frac{b}{c}x+\frac{a}{c}=0\Leftrightarrow cx^2+bx+a=0\)