K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2021

Link hình: file:///C:/Users/THAOCAT/Pictures/Screenshots/Screenshot%20(1231).png

Từ O kẻ \(OD\perp BC,OE\perp AC,OF\perp AB\left(D\in BC,E\in AC,F\in AB\right)\)

Lấy các điểm D', E', F' lần lượt đối xứng với O qua BC, AC, AB

\(\Delta AFO\)và \(\Delta AEO\)vuông có AO là phân giác nên \(\Delta AFO=\Delta AEO\)từ đó suy ra được: \(\Delta AFO=\Delta AEO=\Delta AFF'=\Delta AEE'\)

\(\Delta ABC\)và \(\Delta OAE'\)có \(\widehat{BAC}=\widehat{OAE'}\)nên \(\frac{S_{OAE'}}{S_{ABC}}=\frac{AO.AE'}{AB.AC}=\frac{OA^2}{bc}\)hay \(\frac{S_{AFOE}}{S_{ABC}}=\frac{OA^2}{bc}\)

Tương tự: \(\frac{S_{BFOD}}{S_{ABC}}=\frac{OB^2}{ca}\)\(\frac{S_{CEOD}}{S_{ABC}}=\frac{OC^2}{ab}\)

Từ đó suy ra \(K=1\)

NV
21 tháng 3 2022

Ta có:

\(\dfrac{a}{bc}+\dfrac{b}{ca}\ge2\sqrt{\dfrac{ab}{abc^2}}=\dfrac{2}{c}\)

Tương tự: \(\dfrac{a}{bc}+\dfrac{c}{ab}\ge\dfrac{2}{b}\) ; \(\dfrac{b}{ca}+\dfrac{c}{ab}\ge\dfrac{2}{a}\)

Cộng vế với vế: \(\Rightarrow\dfrac{a}{bc}+\dfrac{b}{ca}+\dfrac{c}{ab}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

\(\Rightarrow P\ge\dfrac{a^2+b^2+c^2}{2}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

\(\Rightarrow P\ge\dfrac{1}{2}\left(a^2+\dfrac{1}{a}+\dfrac{1}{a}\right)+\dfrac{1}{2}\left(a^2+\dfrac{1}{b}+\dfrac{1}{b}\right)+\dfrac{1}{2}\left(c^2+\dfrac{1}{c}+\dfrac{1}{c}\right)\)

\(\Rightarrow P\ge\dfrac{1}{2}.3\sqrt[3]{\dfrac{a^2}{a^2}}+\dfrac{1}{2}.3\sqrt[3]{\dfrac{b^2}{b^2}}+\dfrac{1}{2}.3\sqrt[3]{\dfrac{c^2}{c^2}}=\dfrac{9}{2}\)

\(P_{min}=\dfrac{9}{2}\) khi \(a=b=c=1\)

NV
17 tháng 1 2021

Dự đoán điểm rơi xảy ra tại \(\left(a;b;c\right)=\left(3;2;4\right)\)

Đơn giản là kiên nhẫn tính toán và tách biểu thức:

\(D=13\left(\dfrac{a}{18}+\dfrac{c}{24}\right)+13\left(\dfrac{b}{24}+\dfrac{c}{48}\right)+\left(\dfrac{a}{9}+\dfrac{b}{6}+\dfrac{2}{ab}\right)+\left(\dfrac{a}{18}+\dfrac{c}{24}+\dfrac{2}{ac}\right)+\left(\dfrac{b}{8}+\dfrac{c}{16}+\dfrac{2}{bc}\right)+\left(\dfrac{a}{9}+\dfrac{b}{6}+\dfrac{c}{12}+\dfrac{8}{abc}\right)\)

Sau đó Cô-si cho từng ngoặc là được

13 tháng 1 2022

Có cách nào làm ngắn hơn ko ạ

23 tháng 12 2018

\(VT=\dfrac{1}{\dfrac{a}{b}+\dfrac{c}{a}+1}+\dfrac{1}{\dfrac{b}{c}+\dfrac{a}{b}+1}+\dfrac{1}{\dfrac{c}{a}+\dfrac{b}{c}+1}\)

\(\left(\dfrac{a}{b},\dfrac{b}{c},\dfrac{c}{a}\right)\rightarrow\left(x^3,y^3,z^3\right)\)\(\Rightarrow xyz=1\).

\(VT=\sum\dfrac{1}{x^3+y^3+1}\le\sum\dfrac{1}{xy\left(x+y\right)+xyz}=\sum\dfrac{z}{x+y+z}=1\)

Dấu = xảy ra khi x=y=z=1 hay a=b=c

24 tháng 12 2018

Hay quá bạn ơi tks

25 tháng 3 2018

\(P=\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ca}{b+ca}}\)

\(=\sqrt{\dfrac{ab}{c\left(a+b+c\right)+ab}}+\sqrt{\dfrac{bc}{a\left(a+b+c\right)+bc}}+\sqrt{\dfrac{ca}{b\left(a+b+c\right)+ca}}\)

\(=\sqrt{\dfrac{ab}{\left(b+c\right)\left(c+a\right)}}+\sqrt{\dfrac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{ca}{\left(a+b\right)\left(b+c\right)}}\)

\(\le\dfrac{1}{2}\left(\dfrac{b}{b+c}+\dfrac{a}{a+c}+\dfrac{c}{a+c}+\dfrac{b}{a+b}+\dfrac{c}{b+c}+\dfrac{a}{a+b}\right)=\dfrac{1}{2}\)

\("=" \Leftrightarrow a=b=c=\frac{1}{3}\)

8 tháng 11 2019

§1. Bất đẳng thức

AH
Akai Haruma
Giáo viên
2 tháng 5 2018

Lời giải:

Ta có:

\(P=\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}=\frac{(ab)^2+(bc)^2+(ca)^2}{abc}\)

Xét tử số:

\(\text{TS}=(ab)^2+(bc)^2+(ca)^2\)

\(\Rightarrow \text{TS}^2=a^4b^4+b^4c^4+c^4a^4+2(a^2b^4c^2+a^2b^2c^4+a^4b^2c^2)\)

Áp dụng BĐT AM-GM ta có:

\(\left\{\begin{matrix} a^4b^4+b^4c^4\geq 2a^2b^4c^2\\ b^4c^4+c^4a^4\geq 2a^2b^2c^4\\ c^4a^4+a^4b^4\geq 2a^4b^2c^2\end{matrix}\right.\)

Cộng theo vế và rút gọn:

\(\Rightarrow a^4b^4+b^4c^4+c^4a^4\geq a^2b^4c^2+a^2b^2c^4+a^4b^2c^2\)

Do đó:

\(\text{TS}^2\geq 3(a^2b^4c^2+a^2b^2c^4+a^4b^2c^2)=3a^2b^2c^2(a^2+b^2+c^2)=3a^2b^2c^2\)

\(\Rightarrow \text{TS}\geq \sqrt{3}abc\)

\(\Rightarrow P\geq \sqrt{3}\)

Vậy \(P_{\min}=\sqrt{3}\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)

6 tháng 5 2018

Cách khác:

\(P^2=\dfrac{a^2b^2}{c^2}+\dfrac{b^2c^2}{a^2}+\dfrac{c^2a^2}{b^2}+2\left(a^2+b^2+c^2\right)\)

Áp dụng BĐT Cauchy:

\(\dfrac{a^2b^2}{c^2}+\dfrac{b^2c^2}{a^2}\ge2b^2\)

CMTT\(\Rightarrow\)\(\dfrac{a^2b^2}{c^2}+\dfrac{b^2c^2}{a^2}+\dfrac{a^2c^2}{b^2}\ge a^2+b^2+c^2\)

\(\Rightarrow P^2\ge3\Rightarrow P\ge\sqrt{3}\)

Dấu"=" xảy ra\(\Leftrightarrow\)a=b=c=\(\dfrac{1}{\sqrt{3}}\)

3 tháng 4 2018

Áp dụng BĐT AM-Gm: ( dạng \(\dfrac{1}{x+y+z}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\))

\(VT=\sum\dfrac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\dfrac{1}{9}\left(\sum\dfrac{a}{2}+\sum\left[\dfrac{ab}{a+c}+\dfrac{bc}{a+c}\right]\right)\)

\(=\dfrac{1}{9}\left(\dfrac{a+b+c}{2}+a+b+c\right)=\dfrac{1}{6}\left(a+b+c\right)\)

\(\le\dfrac{1}{6}\sqrt{3\left(a^2+b^2+c^2\right)}=1\) (đpcm)

Dấu = xảy ra khi a=b=c=2

5 tháng 12 2017

để ý cái này: \(\sum\dfrac{a}{a+2\sqrt{bc}}\ge\dfrac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}}=1\)

26 tháng 3 2017

Câu hỏi của Neet - Toán lớp 9 | Học trực tuyến