K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2019

vì a,b,c,d,e là năm nghiệm của P(x)

\(\Rightarrow P\left(x\right)=\left(x-a\right)\left(x-b\right)\left(x-c\right)\left(x-d\right)\left(x-e\right)\)

Ta có : 

\(Q\left(a\right)=a^2-2=-\left(2-a^2\right)=-\left(\sqrt{2}-a\right)\left(\sqrt{2}+a\right)=\left(\sqrt{2}-a\right)\left(-\sqrt{2}-a\right)\)

\(Q\left(b\right)=\left(\sqrt{2}-b\right)\left(-\sqrt{2}-b\right)\)

....

\(Q\left(e\right)=\left(\sqrt{2}-e\right)\left(-\sqrt{2}-e\right)\)

\(\Rightarrow Q\left(a\right).Q\left(b\right).Q\left(c\right).Q\left(d\right).Q\left(e\right)=\left(\sqrt{2}-a\right)\left(\sqrt{2}-b\right)\left(\sqrt{2}-c\right)\left(\sqrt{2}-d\right).\left(\sqrt{2}-e\right)\left(-\sqrt{2}-a\right)\left(-\sqrt{2}-b\right)\left(-\sqrt{2}-c\right)\left(-\sqrt{2}-d\right)\left(-\sqrt{2}-e\right)\)

\(=P\left(\sqrt{2}\right).P\left(-\sqrt{2}\right)=-23\)

30 tháng 10 2015

Theo hệ thức Vi-ét ta có: 

(1)   a+b=-p   và    ab=1        

(2)   c+d=-q   và    cd=1

Biến đổi vế trái VT= [(a-c)(b+d)][(b-c)(a+d)]=(ab+ad-bc-cd)(ab-cd-ac+bd)=(ad-bc)(bd-ac)=abd2-a2cd-b2cd+c2ab=d2-a2-b2+c2

mà q2-p2=(c+d)2-(a+b)2=c2+d2+2cd-a2-b2-2ab=d2-a2-b2+c2

Nên VT=VP 

24 tháng 7 2016

Vì P(x) là đa thức bậc 4 và có 4 nghiệm x1 , x2 , x3 , x4 nên P(x) có thể viết thành : \(P\left(x\right)=\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\left(x-x_4\right)\)

Xét :  \(Q\left(x\right)=x^2-4=\left(x-2\right)\left(x+2\right)=\left(2-x\right)\left(-2-x\right)\)

Ta có \(Q\left(x_1\right)=\left(2-x_1\right)\left(-2-x_1\right)\)\(Q\left(x_2\right)=\left(2-x_2\right)\left(-2-x_2\right)\)

\(Q\left(x_3\right)=\left(2-x_3\right)\left(-2-x_3\right)\) ; \(Q\left(x_4\right)=\left(2-x_4\right)\left(-2-x_4\right)\)

Suy ra : \(T=Q\left(x_1\right).Q\left(x_2\right).Q\left(x_3\right).Q\left(x_4\right)\)

\(=\left[\left(2-x_1\right)\left(2-x_2\right)\left(2-x_3\right)\left(2-x_4\right)\right].\left[\left(-2-x_1\right)\left(-2-x_2\right)\left(-2-x_3\right)\left(-2-x_4\right)\right]\)

\(=P\left(2\right).P\left(-2\right)=-5.3=-15\)

Vậy T = -15

23 tháng 7 2016

Vì P(x) có các nghiệm là x1 , x2 , x3 , x4 nên P(x) có thể viết được dưới dạng : \(P\left(x\right)=\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\left(x-x_4\right)\)

Ta có : \(Q\left(x\right)=x^2-4=\left(x-2\right)\left(x+2\right)=\left(2-x\right)\left(-2-x\right)\)

Xét : \(Q\left(x_1\right)=\left(2-x_1\right)\left(-2-x_1\right)\) ; \(Q\left(x_2\right)=\left(2-x_2\right)\left(-2-x_2\right)\)

\(Q\left(x_3\right)=\left(2-x_3\right)\left(-2-x_3\right)\) ; \(Q\left(x_4\right)=\left(2-x_4\right)\left(-2-x_4\right)\)

Suy ra : 

\(T=Q\left(x_1\right).Q\left(x_2\right).Q\left(x_3\right).Q\left(x_4\right)=\left[\left(2-x_1\right)\left(2-x_2\right)\left(2-x_3\right)\left(2-x_4\right)\right]\left[\left(-2-x_1\right)\left(-2-x_2\right)\left(-2-x_3\right)\left(-2-x_4\right)\right]\)

\(=P\left(2\right).P\left(-2\right)\)

Bạn thay P(2) và P(-2) vào và tính nhé :)

NM
19 tháng 1 2021

Ta đi phản chứng, giả sử P(x) có thể phân tích được thành tích hai đa thức hệ số nguyên bậc lớn hơn 1.

đặt \(P\left(x\right)=Q\left(x\right).H\left(x\right)\)với bậc của Q(x) và H(x) lớn hơn 1

Ta Thấy \(Q\left(i\right).H\left(i\right)=P\left(i\right)=-1\)với i=1,2,...2020.

suy ra \(\hept{\begin{cases}Q\left(i\right)=1\\H\left(i\right)=-1\end{cases}}\)hoặc \(\hept{\begin{cases}Q\left(i\right)=-1\\H\left(i\right)=1\end{cases}}\) suy ra \(Q\left(i\right)+H\left(i\right)=0\)với i=1,2,...,2020

mà bậc của Q(x) và H(x) không vượt quá 2019 suy ra \(Q\left(x\right)+H\left(x\right)=0\Rightarrow Q\left(x\right)=-H\left(x\right)\Rightarrow P\left(x\right)=-\left(Q\left(x\right)\right)^2\)

xét hệ số đơn thức bậc cao nhất của \(P\left(x\right)\) bằng 1 

hệ số đơn thức bậc cao nhất của \(-\left(Q\left(x\right)\right)^2\) bằng -1.  Suy ra vô lý. 

Vậy P(x)  không thể phân tích thành hai đa thức hệ số nguyên có bậc lớn hơn 1.

13 tháng 4 2020

Đa thức \(P\left(x\right)=x^4-5x^2-2x+3\)có bốn nghiệm là \(x_1;x_2;x_3;x_4\)nên P(x) có dạng \(\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\left(x-x_4\right)\)(do P(x) là đa thức bậc bốn)

Ta có: \(Q\left(x\right)=x^2-3=\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)\)

\(\Rightarrow T=Q\left(x_1\right).Q\left(x_2\right).Q\left(x_3\right).Q\left(x_4\right)\)

\(=\left[\left(x_1-\sqrt{3}\right)\left(x_2-\sqrt{3}\right)\left(x_3-\sqrt{3}\right)\left(x_4-\sqrt{3}\right)\right]\)

                   \(\left[\left(x_1+\sqrt{3}\right)\left(x_2+\sqrt{3}\right)\left(x_3+\sqrt{3}\right)\left(x_4+\sqrt{3}\right)\right]\)

\(=P\left(\sqrt{3}\right).P\left(-\sqrt{3}\right)=\left(-3-2\sqrt{3}\right)\left(-3+2\sqrt{3}\right)\)

\(=\left(3+2\sqrt{3}\right)\left(3-2\sqrt{3}\right)=9-12=-3\)

Vậy \(T=Q\left(x_1\right).Q\left(x_2\right).Q\left(x_3\right).Q\left(x_4\right)=-3\)