Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)
\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:
\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)
Thiết lập các BĐT tương tự:
\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)
Dấu "=" không xảy ra nên ta có ĐPCM
Lưu ý: lần sau đăng từng bài 1 thôi nhé !
1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:
\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)
TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)
\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)
Cộng vế với vế ta được:
\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)
Câu 3. Dự đoán dấu "=" khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Dùng phương pháp chọn điểm rơi thôi :)
LG
Áp dụng bđt Cô-si được \(a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\)
\(\Rightarrow1\ge3\sqrt[3]{a^2b^2c^2}\)
\(\Rightarrow\frac{1}{3}\ge\sqrt[3]{a^2b^2c^2}\)
\(\Rightarrow\frac{1}{27}\ge a^2b^2c^2\)
\(\Rightarrow\frac{1}{\sqrt{27}}\ge abc\)
Khi đó :\(B=a+b+c+\frac{1}{abc}\)
\(=a+b+c+\frac{1}{9abc}+\frac{8}{9abc}\)
\(\ge4\sqrt[4]{abc.\frac{1}{9abc}}+\frac{8}{9.\frac{1}{\sqrt{27}}}\)
\(=4\sqrt[4]{\frac{1}{9}}+\frac{8\sqrt{27}}{9}=\frac{4}{\sqrt[4]{9}}+\frac{8}{\sqrt{3}}=\frac{4}{\sqrt{3}}+\frac{8}{\sqrt{3}}=\frac{12}{\sqrt{3}}=4\sqrt{3}\)
Dấu "=" \(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)
Vậy .........
2, \(A=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
\(A=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
\(A=\left[\frac{a^2}{b+c}+\frac{\left(b+c\right)}{4}\right]+\left[\frac{b^2}{a+c}+\frac{\left(a+c\right)}{4}\right]+\left[\frac{c^2}{a+b}+\frac{\left(a+b\right)}{4}\right]-\frac{\left(a+b+c\right)}{2}\)
Áp dụng BĐT AM-GM ta có:
\(A\ge2.\sqrt{\frac{a^2}{4}}+2.\sqrt{\frac{b^2}{4}}+2.\sqrt{\frac{c^2}{4}}-\frac{\left(a+b+c\right)}{2}\)
\(A\ge a+b+c-\frac{6}{2}\)
\(A\ge6-3\)
\(A\ge3\)
Dấu " = " xảy ra \(\Leftrightarrow\)\(\frac{a^2}{b+c}=\frac{b+c}{4}\Leftrightarrow4a^2=\left(b+c\right)^2\Leftrightarrow2a=b+c\)(1)
\(\frac{b^2}{a+c}=\frac{a+c}{4}\Leftrightarrow4b^2=\left(a+c\right)^2\Leftrightarrow2b=a+c\)(2)
\(\frac{c^2}{a+b}=\frac{a+b}{4}\Leftrightarrow4c^2=\left(a+b\right)^2\Leftrightarrow2c=a+b\)(3)
Lấy \(\left(1\right)-\left(3\right)\)ta có:
\(2a-2c=c+b-a-b=c-a\)
\(\Rightarrow2a-2c-c+a=0\)
\(\Leftrightarrow3.\left(a-c\right)=0\)
\(\Leftrightarrow a-c=0\Leftrightarrow a=c\)
Chứng minh tương tự ta có: \(\hept{\begin{cases}b=c\\a=b\end{cases}}\)
\(\Rightarrow a=b=c=2\)
Vậy \(A_{min}=3\Leftrightarrow a=b=c=2\)
Có: \(\dfrac{a+1}{1+b^2}=\dfrac{\left(1+b^2\right).\left(a+1\right)-b^2\left(a+1\right)}{1+b^2}=a+1-\dfrac{b^2\left(a+1\right)}{1+b^2}\)
Áp dụng bất đẳng thức Cauchy cho 2 số dương 1 và b2 ta được
\(1+b^2\ge2b\Rightarrow-\dfrac{b^2\left(a+1\right)}{1+b^2}\ge-\dfrac{b^2\left(a+1\right)}{2b}=-\dfrac{ab+b}{2}\)
\(\Rightarrow\dfrac{a+1}{1+b^2}\ge a+1-\dfrac{ab+b}{2}\)
CMTT\(\Rightarrow\dfrac{b+1}{1+c^2}\ge b+1-\dfrac{bc+c}{2};\dfrac{c+1}{1+a^2}\ge c+1-\dfrac{ac+a}{2}\)
\(\Rightarrow A\ge\left(a+b+c\right)+3-\dfrac{\left(ab+bc+ac\right)+\left(a+b+c\right)}{2}\)
Ta có \(ab+bc+ca\le\dfrac{1}{3}\left(a+b+c\right)^2\)
\(\Rightarrow ab+ac+bc\le\dfrac{1}{3}.3^2=3\)
\(\Rightarrow A\ge3+3-\dfrac{3+3}{2}=3\)(đpcm)
Chả biết đúng hay sai,làm đại.:v
Dự đoán dấu "=" xảy ra tại a = b = c = 1
Với dự đoán đó,
Xét \(\dfrac{a+1}{1+b^2}=2-\dfrac{a+1}{1+b^2}\ge2-\dfrac{a+1}{2b}\)
Tương tự: \(\dfrac{b+1}{1+c^2}\ge2-\dfrac{b+1}{2c};\dfrac{c+1}{1+a^2}\ge2-\dfrac{c+1}{2a}\)
Cộng theo vế 3BĐT,ta có: \(VT\ge2+2+2-\dfrac{a+1}{2b}+\dfrac{b+1}{2c}+\dfrac{c+1}{2a}\)
\(=6-\dfrac{a+1}{2b}+\dfrac{b+1}{2c}+\dfrac{c+1}{2a}\)
\(\ge6-\dfrac{2b}{2b}+\dfrac{2c}{2c}+\dfrac{2a}{2a}=3^{\left(đpcm\right)}\) (do dự đoán a = b = c = 1 nên \(a+1\le2b\))
Vậy điều ta dự đoán là đúng.
Dấu "=" xảy ra khi a=b=c=1
Bài toán tổng quát: Đề này n lẻ mới đúng nhé
Ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
\(\Leftrightarrow\dfrac{a+b}{ab}+\dfrac{1}{c}-\dfrac{1}{a+b+c}=0\)
\(\Leftrightarrow\dfrac{a+b}{ab}+\dfrac{a+b}{c\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(a+b\right)\left(\dfrac{1}{ab}+\dfrac{1}{ac+bc+c^2}\right)=0\)
\(\Leftrightarrow\dfrac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{ab\left(ac+bc+c^2\right)}=0\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)
Nếu \(a=-b\Rightarrow a^n=-b^n\) và \(\dfrac{1}{a^n}=\dfrac{-1}{b^n}\)
Ta có: \(\dfrac{1}{a^n}+\dfrac{1}{b^n}+\dfrac{1}{c^n}=\dfrac{1}{c^n}\)
\(\dfrac{1}{a^n+b^n+c^n}=\dfrac{1}{c^n}\)
VT = VP => ĐPCM
Còn ý còn lại thì dựa trên bài này mà biến đổi một tí là ra
\(VT=\dfrac{a^3}{a^2+abc}+\dfrac{b^3}{b^2+abc}+\dfrac{c^3}{c^2+abc}\)
Xét \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\Leftrightarrow ab+bc+ac=abc\)
\(\Rightarrow VT=\dfrac{a^3}{a^2+ab+bc+ac}+\dfrac{b^3}{b^2+ab+bc+ac}+\dfrac{c^3}{c^2+ab+bc+ac}\)
\(\Leftrightarrow VT=\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^3}{\left(b+a\right)\left(b+c\right)}+\dfrac{c^3}{\left(c+b\right)\left(c+a\right)}\)
Áp dụng bđt Cauchy ta có :
\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge3\sqrt[3]{\dfrac{a^3}{64}}=\dfrac{3a}{4}\)
Thiết lập tương tự và thu lại ta có :
\(VT+\dfrac{a+b+c}{2}\ge\dfrac{3}{4}\left(a+b+c\right)\)
\(\Rightarrow VT\ge\dfrac{3}{4}\left(a+b+c\right)-\dfrac{1}{2}\left(a+b+c\right)=\dfrac{a+b+c}{4}\left(đpcm\right)\)
Dấu '' = '' xảy ra khi \(a=b=c=3\)
\(\frac{1}{a^2+b^2+2}+\frac{1}{c^2+b^2+2}+\frac{1}{a^2+c^2+2}\le\frac{3}{4}\)
\(\Leftrightarrow\frac{a^2+b^2}{a^2+b^2+2}+\frac{b^2+c^2}{b^2+c^2+2}+\frac{c^2+a^2}{c^2+a^2+2}\ge\frac{3}{2}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT\ge\frac{\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)^2}{2\left(a^2+b^2+c^2\right)+6}\)
\(\ge\frac{\sqrt{3\left(a^2b^2+b^2c^2+c^2a^2\right)}+2\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}\)
\(\ge\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\)
Cần chứng minh \(\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\ge\frac{3}{2}\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge0\) *luôn đúng*
\(2\left(\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\right)\ge\dfrac{1+a}{1-a}+\dfrac{1+b}{1-b}+\dfrac{1+c}{1-c}\)
Thay thế \(a+b+c=1\)
\(\Leftrightarrow2\left(\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\right)\ge\dfrac{2a+b+c}{b+c}+\dfrac{a+2b+c}{a+c}+\dfrac{a+b+2c}{a+b}\)
\(\Leftrightarrow2\left(\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\right)\ge\dfrac{2a}{b+c}+\dfrac{2b}{a+c}+\dfrac{2c}{a+b}+3\)
\(\Leftrightarrow\dfrac{2b}{a}+\dfrac{2c}{b}+\dfrac{2a}{c}\ge\dfrac{2a}{b+c}+\dfrac{2b}{a+c}+\dfrac{2c}{a+b}+3\)
\(\Leftrightarrow\left(\dfrac{2b}{a}-\dfrac{2b}{a+c}\right)+\left(\dfrac{2c}{b}-\dfrac{2c}{a+b}\right)+\left(\dfrac{2a}{c}-\dfrac{2a}{b+c}\right)\ge3\)
\(\Leftrightarrow\dfrac{2bc}{a\left(a+c\right)}+\dfrac{2ca}{b\left(a+b\right)}+\dfrac{2ab}{c\left(b+c\right)}\ge3\)
\(\Leftrightarrow\dfrac{bc}{a\left(a+c\right)}+\dfrac{ca}{b\left(a+b\right)}+\dfrac{ab}{c\left(b+c\right)}\ge\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{\left(bc\right)^2}{abc\left(a+c\right)}+\dfrac{\left(ca\right)^2}{abc\left(a+b\right)}+\dfrac{\left(ab\right)^2}{abc\left(b+c\right)}\ge\dfrac{3}{2}\)
Áp dụng bất đẳng thức cộng mẫu số
\(\Rightarrow\dfrac{\left(bc\right)^2}{abc\left(a+c\right)}+\dfrac{\left(ca\right)^2}{abc\left(a+b\right)}+\dfrac{\left(ab\right)^2}{abc\left(b+c\right)}\ge\dfrac{\left(ab+bc+ca\right)^2}{abc\left(a+b+c+a+b+c\right)}=\dfrac{\left(ab+bc+ca\right)^2}{2abc}\)
Chứng minh rằng \(\dfrac{\left(ab+bc+ca\right)^2}{2abc}\ge\dfrac{3}{2}\)
\(\Leftrightarrow2\left(ab+bc+ca\right)^2\ge6abc\)
\(\Leftrightarrow\left(ab+bc+ca\right)^2\ge3abc\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc\ge3abc\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\ge3abc\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\ge3abc\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\)
Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm
\(\Rightarrow\left\{{}\begin{matrix}a^2b^2+b^2c^2\ge2\sqrt{a^2b^4c^2}=2ab^2c\\b^2c^2+c^2a^2\ge2\sqrt{a^2b^2c^4}=2abc^2\\a^2b^2+c^2a^2\ge2\sqrt{a^4b^2c^2}=2a^2bc\end{matrix}\right.\)
\(\Leftrightarrow2\left(a^2b^2+b^2c^2+c^2a^2\right)\ge2abc\left(a+b+c\right)\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\) ( đpcm )
Vì \(\dfrac{\left(ab+bc+ca\right)^2}{2abc}\ge\dfrac{3}{2}\)
Vậy \(\dfrac{\left(bc\right)^2}{abc\left(a+c\right)}+\dfrac{\left(ca\right)^2}{abc\left(a+b\right)}+\dfrac{\left(ab\right)^2}{abc\left(b+c\right)}\ge\dfrac{3}{2}\)
\(\Leftrightarrow2\left(\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\right)\ge\dfrac{1+a}{1-a}+\dfrac{1+b}{1-b}+\dfrac{1+c}{1-c}\)( đpcm )
Ta đi chứng minh BĐT : \(a^2+b^2+c^2\ge2\left(bc+ac-ab\right)\)
\(\Leftrightarrow\) \(a^2+b^2+c^2+2ab-2bc-2ac\ge0\)
\(\Leftrightarrow\) \(\left(a+b-c\right)^2\ge0\) luôn đúng.
\(\Rightarrow2\left(bc+ac-ab\right)\le\dfrac{5}{3}\)
\(\Leftrightarrow bc+ac-ab\le\dfrac{5}{6}< 1\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{c}< \dfrac{1}{abc}\)
Đặt \(\left\{{}\begin{matrix}a^2-1=x\\b^2-1=y\\c^2-1=z\end{matrix}\right.\)(x,y,z>0)thì giả thiết trở thành \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\)
chứng minh \(\dfrac{1}{\sqrt{x+1}+1}+\dfrac{1}{\sqrt{y+1}+1}+\dfrac{1}{\sqrt{z+1}+1}\le1\)
Áp dụng BĐT cauchy:(dạng \(\dfrac{1}{a+b+c}\le\dfrac{1}{9}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\))(
\(\sum\dfrac{1}{\sqrt{x+1}+1}\le\sum\dfrac{1}{9}\left(\dfrac{4}{\sqrt{x+1}}+1\right)=\dfrac{4}{9}\left(\dfrac{1}{\sqrt{x+1}}+\dfrac{1}{\sqrt{y+1}}+\dfrac{1}{\sqrt{z+1}}\right)+\dfrac{1}{3}\)(*)
mà theo BĐT bunyakovsky:\(\left(\sum\dfrac{1}{\sqrt{x+1}}\right)^2\le3\left(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\right)\le\dfrac{3}{16}\left(\dfrac{9}{x}+\dfrac{9}{y}+\dfrac{9}{z}+3\right)=\dfrac{3}{16}\left(9+3\right)=\dfrac{9}{4}\)
\(\Leftrightarrow\sum\dfrac{1}{\sqrt{x+1}}\le\dfrac{3}{2}\)kết hợp với (*), ta có
\(VT\le\dfrac{4}{9}.\dfrac{3}{2}+\dfrac{1}{3}=\dfrac{2}{3}+\dfrac{1}{3}=1\)
Dấu = xảy ra khi x=y=z=3 hay a=b=c=2 (a,b,c>1)
Sửa đề: C/m: \(\dfrac{1}{a+1}+\dfrac{1}{b+1}-\dfrac{1}{c+1}< 1\)
Ta có: \(a,b,c>1:\)
\(\Rightarrow\left\{{}\begin{matrix}a-1>0\\b-1>0\\c-1>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a-1}>0\\\dfrac{1}{b-1}>0\\\dfrac{1}{c-1}>0\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{a-1}+\dfrac{1}{b-1}+\dfrac{1}{c-1}>0\)
Quay lại bài toán, theo giả thiết ta có:
\(\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}-\dfrac{1}{a-1}-\dfrac{1}{b-1}-\dfrac{1}{c-1}=1\)
\(\Leftrightarrow\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c-1}=1+\dfrac{1}{a-1}+\dfrac{1}{b-1}+\dfrac{1}{c-1}\)
\(\Leftrightarrow\dfrac{1}{a+1}+\dfrac{1}{b+1}-\dfrac{1}{c+1}< 1\)(đpcm)