K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2017

\(\left(1\right)\Leftrightarrow z=x-y+1\)

Thế vào (2)\(xy+\left(x^2+y^2-2xy+2x-2y+1\right)-7\left(x-y+1\right)+10=0\)

\(x^2+y^2-xy-5x+5y+4\Leftrightarrow-xy-5\left(x-y\right)+21=0\left(3\right)\\ \)

\(\left(x-y\right)^2=17-2xy\Rightarrow-xy=\frac{\left(x-y\right)^2-17}{2}\) (4)đặt (x-y)=t

\(\left(3\right)\Leftrightarrow\frac{t^2-17}{2}-5t+21=0\Leftrightarrow t^2-10t+25\Rightarrow t=5\)

(1)=> z=6

(4) => xy=-4 hệ \(\left\{\begin{matrix}x-y=5\\xy=-4\end{matrix}\right.\)=> (y+5)y=y^2+5y+4=0=>\(\left\{\begin{matrix}y=-1\\y=-4\end{matrix}\right.\) \(\Rightarrow\left\{\begin{matrix}x=4\\x=1\end{matrix}\right.\)

Kết luận:

(x,y,z)=(1,-4,6);(4,-1,6)

8 tháng 8 2017

\(\left\{{}\begin{matrix}3x^2+xz-yz+y^2=2\left(1\right)\\y^2+xy-yz+z^2=0\left(2\right)\\x^2-xy-xz-z^2=2\left(3\right)\end{matrix}\right.\)

Lấy (2) cộng (3) ta được

\(x^2+y^2-yz-zx=2\) (4)

Lấy (1) - (4) ta được

\(2x\left(x+z\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-z\end{matrix}\right.\)

Xét 2 TH rồi thay vào tìm được y và z

8 tháng 8 2017

1. \(\left\{{}\begin{matrix}6xy=5\left(x+y\right)\\3yz=2\left(y+z\right)\\7zx=10\left(z+x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{6}{5}\\\dfrac{y+z}{yz}=\dfrac{3}{2}\\\dfrac{z+x}{zx}=\dfrac{7}{10}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{6}{5}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{3}{2}\\\dfrac{1}{z}+\dfrac{1}{x}=\dfrac{7}{10}\end{matrix}\right.\)

Đến đây thì dễ rồi nhé

b: =>x^2-y^2-4y-2x-3=0 và x^2+2x+y=0

=>x^2-2x+1-y^2-4y-4=0 và x^2+2x+y=0

=>x=1 và y=-2 và x^2+2x+y=0

=>Hệ vô nghiệm

a: \(\Leftrightarrow\left\{{}\begin{matrix}z=2x-5\\y=3-2x+z=3-2x+2x-5=-2\\3x-2\cdot\left(-2\right)+2x-5=14\end{matrix}\right.\)

=>y=-2; 3x+4+2x-5=14; z=2x-5

=>y=-2; x=3; z=2*3-5=1