K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2018

\(\frac{2014a}{ab+2014a+2014}+\frac{b}{bc+b+2014}+\frac{c}{ac+c+1}\)

\(=\frac{abc.a}{ab+abca+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)

\(=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}=1\left(ĐPCM\right)\)

22 tháng 11 2015

 

\(\frac{2014a}{ab+2014a+2014}+\frac{b}{bc+b+2014}+\frac{c}{ac+c+1}=\frac{2014ac}{abc+2014ac+2014c}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)

\(=\frac{2014ac}{2014+2014ac+2014c}+\frac{b}{b.\left(ac+c+1\right)}+\frac{c}{ac+c+1}\)


\(=\frac{2014ac}{2014.\left(ac+c+1\right)}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}\)

\(=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}=\frac{ac+c+1}{ac+c+1}=1\)

=>Điều phải chứng minh

22 tháng 11 2015

\(=\frac{a^2bc}{ab+a^2bc+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}=\frac{ac+c+1}{ac+c+1}=1\)

Do \(ab+bc+ac=2014\) nên từ giả thiết tương đương :

\(\frac{a^2+ab+bc+ac}{a+b}+\frac{b^2+ab+bc+ca}{b+c}+\frac{c^2+ab+bc+ca}{c+a}\)

\(=\frac{\left(a+b\right)\left(a+c\right)}{\left(a+b\right)}+\frac{\left(b+c\right)\left(b+a\right)}{a+b}+\frac{\left(c+a\right)\left(c+b\right)}{c+a}\)

\(=a+c+b+a+c+b=2\left(a+b+c\right)\) (đpcm )

9 tháng 12 2014

a.dkxd la x khac-1

b.rut gon ta duoc 1/x

c.gia tri 1/2014

10 tháng 12 2018

\(S=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

\(S+3=\left(1+\frac{a}{b+c}\right)+\left(1+\frac{b}{a+c}\right)+\left(1+\frac{c}{a+b}\right)\)

\(S+3=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}=\left(a+b+c\right).\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\)

\(S+3=\frac{2014.1}{2014}=1\Rightarrow S=1-3=-2\)

29 tháng 3 2016

bài này chứng minh bài toán phụ, khá là phức tạp, trình bày ra chắc chết quá

bài này mình thấy tren mạng đăng lên đó, có kết quả nhưng ko copy được

\(c,\frac{x-a-b}{c}-1+\frac{x-b-c}{a}-1+\frac{x-a-c}{b}-1=0.\)

\(\frac{x-a-b-c}{c}+\frac{x-a-b-c}{a}+\frac{x-a-b-c}{b}=0\)

\(\left(x-a-b-c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0\)

=>\(\orbr{\begin{cases}a+b+c=x\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\end{cases}}\)

Vậy.......

11 tháng 8 2016

Từ giả thiết suy ra : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{c\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c^2+ac+bc}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left[\frac{c^2+ac+bc+ab}{ab\left(c^2+ac+bc\right)}\right]=0\)

\(\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{ab\left(c^2+bc+ac\right)}=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Rightarrow a+b=0\) hoặc \(b+c=0\) hoặc \(a+c=0\)

Nếu a + b = 0 thì c = 2014 thay vào M : 

\(M=\frac{1}{a^{2013}}+\frac{1}{b^{2013}}+\frac{1}{c^{2013}}=\frac{a^{2013}+b^{2013}}{\left(ab\right)^{2013}}+\frac{1}{c^{2013}}=\frac{\left(a+b\right).A}{\left(ab\right)^{2013}}+\frac{1}{c^{2013}}\)

\(=\frac{1}{c^{2013}}=\frac{1}{2014^{2013}}\) (A là một nhân tử trong phân tích a2013 + b2013 thành nhân tử)

Tương tự với các trường hợp còn lại.

Vậy \(M=\frac{1}{2014^{2013}}\)