Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt[3]{\overline{xyz}}=x+y+z\)
\(\Leftrightarrow\overline{xyz}=\left(x+y+z\right)^3\)
Đặt \(m=x+y+z\Rightarrow m\equiv\overline{xyz}\left(mod9\right)\)
\(\Rightarrow\overline{xyz}-m⋮9\)
Đặt \(\overline{xyz}-m=9k\left(k\inℕ\right)\)
\(\Leftrightarrow m^3-m=9k\Leftrightarrow\left(m-1\right)m\left(m+1\right)=9k\)
\(\Rightarrow\left(m-1\right)m\left(m+1\right)⋮9\)
Nhận xét:trong 3 số tự nhiên liên tiếp tồn tại duy nhất 1 số chia hết cho 3 mà tích chúng chia hết cho 9 nên tồn tại duy nhất 1 số chia hết cho 9
Mặt khác \(100\le\overline{xyz}\le999\Rightarrow100\le m^3\le999\)
\(\Leftrightarrow4\le m\le9\Rightarrow3\le m-1\le8;5\le m+1\le10\)
Nếu \(m⋮9\Rightarrow m=9\Rightarrow\overline{xyz}=9^3=729\)
Thử lại ta thấy không thỏa mãn,loại
Nếu \(m-1⋮9\left(KTM\right)\)
Nếu \(m+1⋮9\Rightarrow m+1=9\Rightarrow m=8\Rightarrow\overline{xyz}=8^3=512\)
Thử lại ta thấy thỏa mãn
Vậy số đó là 512
Đặt \(\overline{abc}=11m+k;\overline{xyz}=11n+k\left(k\in N,k< 11\right)\)
Khi đó ta có: \(\overline{abcxyz}=1000.\overline{abc}+\overline{xyz}=1000\left(11m+k\right)+11n+k\)
\(=11000m+11n+1001k\)
Biểu thức trên chia hết cho 11 với mọi m, n, k.
Vậy ....