Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/a^4+b+c<=1/a+b+c
1/b^4+c+a=1/a+b+c
1/c^4+b+a<=1/a+b+c
=><=3/a+b+c
Đk để các phân số tồn tại là a,b,c đều khác 0
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
a/b=b/c=c/a = a+b+c/a+b+c = 1
=> a=b;b=c;c=a => a=b=c
Khi đó : a^2+b^2+c^2/(a+b+c)^2 = a^2+a^2+a^2/(a+a+a)^2 = 3a^2/9a^2 = 1/3
=> ĐPCM
k mk nha
Nếu \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}>>\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{c^2}{a^2}\) rồi áp dụng tính chất dãy tỉ số bằng nhau suy ra a=b=c ( ko ra được thì đừng giải bài này vì sẽ hơi khó đấy )
Tách (a+b+c)^2 = a^2 +b^2 + c^2 + 2ab +2bc +2ca. Từ a=b=c >> ab=a^2, bc=b^2, ca=c^2. Vậy 2ab+2bc+2ca=2a^2+2b^2+2c^2
>> (a+b+c)^2 = a^2 +b^2 + c^2 + 2a^2+2b^2+2c^2 = 3(a^2 +b^2 + c^2). Ghép vào cái phân số kia là ra.