Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Độ giảm biên độ: Giả sử tại 1 thời điểm vật đang đứng ở vị trí biên có độ lớn A1 sau 1/2 chu kì vật đến vị trí biên có độ lớn A2. Sự giảm biên độ là do công của lực ma sát trên đoạn đường (A1 + A2) là (A1 - A2)
Sau 1/2 chu kì nữa vật đến vị trí biên có biên độ lớn A3 thì A2 - A3=
Vậy độ giảm biên độ trong cả chu kì là:
Số dao động thực hiện được đến lúc dừng lại là:
+ Thời gian mà từ lúc vật dao động đến khi dừng lại là Δt = N.T hay
+ Trong đó:
+ Thay số:
Hướng dẫn:
+ Vật m 2 sẽ rời khỏi m 2 khi hai vật này đi qua vị trí cân bằng tạm lần đầu tiên
→ Tốc độ của vật m 2 tại vị trí này
v 0 = ω X 0 − x 0 = k m 1 + m 2 X 0 − μ m 1 + m 2 g k = 50 0 , 1 + 0 , 4 0 , 1 − 0 , 05 0 , 1 + 0 , 4 .10 50 = 0 , 95
+ Quãng đường m 2 đi được từ khi rời vật m 1 đến khi dừng lại 1 2 m 2 v 0 2 = μ m 2 g S → S = v 0 2 2 μ g = 0 , 9025 m
→ Vậy tổng thời gian từ khi thả vật m 2 đến khi m 2 dừng lại là t = T 4 + 2 S μ g = 2 , 056 s
Đáp án C
Hướng dẫn:
+ Độ biến dạng của lò xo tại vị trí cân bằng tạm x 0 = μ m g k = 0 , 1.0 , 1.10 100 = 10 − 3 m
→ Biên độ dao động của vật trong nửa chu kì đầu tiên A 1 = X 0 – x 0 .
Cứ sau mỗi nửa chu kì, kể từ nửa chu kì thứ 2 biên độ của vật dao động so với các vị trí cân bằng tạm sẽ giảm 2 x 0 .
→ Ta xét tỉ số A 1 2 x 0 = X 0 − x 0 2 x 0 = 0 , 1 − 10 − 3 2.10 − 3 = 49 , 5
→ Biên độ của vật sau 49 nửa chu kì tiếp theo là A 49 = A 1 – ( 49 . 2 + 1 ) x 0 = 1 m m → vật tắt dần tại đúng vị trí lò xo không biến dạng.
+ Áp dụng định luật bảo toàn và chuyển hóa năng lượng ta có 1 2 k X 0 2 = μ m g S → S = k X 0 2 2 μ m g = 100.0 , 1 2 2.0 , 1.0 , 1.10 = 5 m
Đáp án B
Hướng dẫn: Chọn đáp án C
Cách 1: Độ giảm cơ năng đúng bằng công của lực ma sát:
Cách 2: Xem I là tâm dao động và biên độ A 1 = A - x 1 , tốc độ tại O:
Hướng dẫn: Chọn đáp án A
Sau khi qua O lần 3, biên độ còn lại:
Bình luận: Đến đây, các bạn tự mình rút ra quy trình giải nhanh và công thức giải nhanh với loại bài toán tìm tốc độ khi đi qua O lần thứ n! Với bài toán tìm tốc độ ở các điểm khác điểm O thì nên giải theo cách 2 và chú ý rằng, khi đi từ P đến Q thì I là tâm dao động còn khi đi từ Q đến P thì I’ là tâm dao động.
Phương pháp: Sử dụng phương pháp động lực học và phương pháp bảo toàn năng lượng.
Cách giải:
Hai vật chuyển động đến vị trí vận tốc cực đại, vị trí đó là
Khi hai vật tách nhau ra, vật 1 tiếp tục dao động, vật 2 chuyển động chậm dần rồi dừng lại.
Gia tốc chuyển động của vật 2 là:
Đáp án C