Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A. Đặt A= biểu thức đã cho
=>\(\frac{A}{3}=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
=>\(\frac{A}{3}.2=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\)
=>\(\frac{2A}{3}-\frac{A}{3}=2-\frac{1}{2^9}\)
=>\(A=\frac{3\left(2^{10}-1\right)}{2^9}\)
B. Đặt B=biểu thức đã cho
\(\Rightarrow\frac{B}{2}=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{2015.2017}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2015}-\frac{1}{2017}\)
\(=\frac{1}{3}-\frac{1}{2017}=\frac{2014}{6051}\)
\(\Rightarrow B=\frac{4028}{6051}\)
Đặt \(A=\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{x\left(x+2\right)}\)(sửa đề)
\(\Rightarrow A=\frac{1}{2}.3.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\right)\)
\(\Rightarrow A=\frac{3}{2}\left(\frac{1}{3}-\frac{1}{x+2}\right)\)
\(\Rightarrow A=\frac{1}{2}-\frac{3}{2x+4}\)
1)a, \(0,5x-\frac{2}{3}x=\frac{7}{12}\) b) \(x:4\frac{1}{3}=-\frac{2}{5}\)
\(x\left(0,5-\frac{2}{3}\right)=\frac{7}{12}\) \(x=-\frac{2}{5}.4\frac{1}{3}\)
\(-\frac{1}{6}x=\frac{7}{12}\) \(x=-\frac{26}{15}\)
\(x=\frac{-7}{2}\)
c) \(\left(\frac{3x}{7}+1\right):\left(-4\right)=-\frac{1}{28}\) d) \(x+30\%x=-1,3\)
\(\frac{3x}{7}+1=-\frac{1}{28}.\left(-4\right)\) \(x\left(1+30\%\right)=-1,3\)
\(\frac{3x}{7}+1=\frac{1}{7}\) \(1,3x=-1,3\)
\(\frac{3x}{7}=-\frac{6}{7}\) \(x=-1,3:1,3\)
\(x=-6.7:7:3\) \(x=-1\)
\(x=-2\)
Bài 2:
\(\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{2019.2021}=\frac{3}{2}\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{2019.2021}\right)\)
\(=\frac{3}{2}\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2019}-\frac{1}{2021}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{2021}\right)\)
\(=\frac{3}{2}.\frac{2016}{10105}\)
\(=\frac{3024}{10105}\)
Đặt \(A=\frac{4}{3.5}+\frac{4}{5.7}+\frac{4}{7.9}+...+\frac{4}{99.101}\)
\(\Rightarrow\frac{1}{2}A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{3}-\frac{1}{101}\)
\(\Rightarrow\frac{1}{2}A=\frac{101}{303}-\frac{3}{303}\)
\(\Rightarrow\frac{1}{2}A=\frac{98}{303}\)
\(\Rightarrow A=\frac{98}{303}\div\frac{1}{2}\)
\(\Rightarrow A=\frac{199}{303}\)
\(x+\frac{3}{22}=\frac{27}{121}.\frac{11}{9}\)
\(\Leftrightarrow x+\frac{3}{22}=\frac{27.11}{121.9}\)
\(\Leftrightarrow x+\frac{3}{22}=\frac{3.1}{11.1}\)
\(\Leftrightarrow x+\frac{3}{22}=\frac{3}{11}\)
\(\Leftrightarrow x=\frac{3}{11}-\frac{3}{22}\)
\(\Leftrightarrow x=\frac{6}{22}-\frac{3}{22}\)
\(\Leftrightarrow x=\frac{3}{22}\)
\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right).....\left(1+\frac{1}{99}\right)\)
\(=\left(\frac{2}{2}+\frac{1}{2}\right)\left(\frac{3}{3}+\frac{1}{3}\right)\left(\frac{4}{4}+\frac{1}{4}\right).....\left(\frac{99}{99}+\frac{1}{99}\right)\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}\)
\(=\frac{3.4.5....100}{2.3.4....99}=\frac{100}{2}=50\)
G=\(\frac{3}{2.5}+\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{2015.2017}\)
G=\(3.\left(\frac{1}{2.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{2015.2017}\right)\)
G=\(3.\left(\frac{1}{2}.\frac{1}{5}+\frac{1}{5}.\frac{1}{7}+\frac{1}{7}.\frac{1}{9}+...+\frac{1}{2013}.\frac{1}{2015}+\frac{1}{2015}.\frac{1}{2017}\right)\)
G=\(3.\left(\frac{1}{2}+\frac{1}{2017}\right)\)
G=1.5
Anh ko bik có đúng ko nữa lâu quá rồi. Em thông cảm nhé
nhớ 3 câu x khác nhau nhé