\(P=(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{x-1})\div(\frac{2}{x}-\frac{2-x}{x\sqrt{x}+x})\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2020

a, ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\x\ne0\\\sqrt{x}+1\ne0\\\sqrt{x}-1\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

Ta có : \(P=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{x-1}\right):\left(\frac{2}{x}-\frac{2-x}{x\sqrt{x}+x}\right)\)

=> \(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\left(\frac{2\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}-\frac{2-x}{x\left(\sqrt{x}+1\right)}\right)\)

=> \(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{2\left(\sqrt{x}+1\right)-2+x}{x\left(\sqrt{x}+1\right)}\right)\)

=> \(P=\left(\frac{x+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{x+2\sqrt{x}}{x\left(\sqrt{x}+1\right)}\right)\)

=> \(P=\frac{x\left(x+2\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x+2\sqrt{x}\right)}\)

=> \(P=\frac{x}{\sqrt{x}-1}\)

b, Ta có : P > 2

=> \(\frac{x}{\sqrt{x}-1}>2\)

=> \(x>2\sqrt{x}-2\)

=> \(x-2\sqrt{x}+2>0\)

=> \(\left(\sqrt{x}-1\right)^2+1>0\)

11 tháng 10 2016

a) \(P=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{x-1}\right):\left(\frac{2}{x}-\frac{2-x}{x\sqrt{x}+x}\right)\left(ĐK:x>0;x\ne1\right)\)

\(=\left[\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]:\left[\frac{2}{x}-\frac{2-x}{x\left(\sqrt{x}+1\right)}\right]\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{2\left(\sqrt{x}+1\right)-2+x}{x\left(\sqrt{x}+1\right)}\)

\(=\frac{x+\sqrt{x}+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\frac{x\left(\sqrt{x}+1\right)}{2\sqrt{x}+2-2+x}\)

\(=\frac{x+2\sqrt{x}}{\sqrt{x}-1}\cdot\frac{x}{2\sqrt{x}+x}=\frac{x}{\sqrt{x}-1}\)

b)Để P>2

\(\Leftrightarrow\frac{x}{\sqrt{x}-1}>2\)

\(\Leftrightarrow\frac{x}{\sqrt{x}-1}-2>0\)

\(\Leftrightarrow\frac{x-2\sqrt{x}+2}{\sqrt{x}-1}>0\)

\(\Leftrightarrow\frac{\left(\sqrt{x}-1\right)^2+1}{\sqrt{x}-1}>0\)

\(\Leftrightarrow\sqrt{x}-1>0\Leftrightarrow x>1\left(tm\right)\)

Vậy x>1 thì P>2

1 tháng 9 2017

Có biết đâu mà giúp.Toàn x với x.