K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2021

a: \(P=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-3}{\sqrt{x}-3}\)

31 tháng 8 2021

a, ĐK: \(x\ge0;x\ne9\)

\(P=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{3x+9}{9-x}\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{2x-6\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{x+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{-3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=-\dfrac{3}{\sqrt{x}-3}\)

31 tháng 8 2021

b, \(P>0\Leftrightarrow-\dfrac{3}{\sqrt{x}-3}>0\)

\(\Leftrightarrow\sqrt{x}-3>0\)

\(\Leftrightarrow x>9\)

c, \(P=-\dfrac{3}{\sqrt{x}-3}\in Z\)

\(\Leftrightarrow\sqrt{x}-3\inƯ_3=\left\{\pm1;\pm3\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{0;2;4;6\right\}\)

\(\Leftrightarrow x\in\left\{0;4;16;36\right\}\)

21 tháng 2 2019

\(P=\frac{4\sqrt{x}+3}{x+\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\)

\(P=\frac{4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}}{\sqrt{x}+1}=\frac{4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{x}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\frac{x+4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}\inℤ\Leftrightarrow x+4\sqrt{x}+3⋮\sqrt{x}\)

Giải tiếp nhé sau đó thử chọn :V

21 tháng 2 2019

\(p=\frac{4\sqrt{x}+3}{x+\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\)

\(=\frac{4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{x}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\frac{x+\sqrt{x}+3\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}+3}{\sqrt{x}}=1+\frac{3}{\sqrt{x}}\)

Để \(x\in Z\Rightarrow P\in Z\)

\(\Rightarrow\sqrt{x}\inƯ\left(3\right)= \left\{-3;3\right\}\)

\(\Leftrightarrow x=9\left(t.mĐKXĐ\right)\)

a: \(P=\dfrac{x-\sqrt{x}-1-\sqrt{x}+1}{x-1}\cdot\dfrac{4\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)^2}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)\cdot4\left(\sqrt{x}-2\right)}{\sqrt{x}\left(x-1\right)}=\dfrac{4}{x-1}\)

Để P nguyên dương thì x-1 thuộc {1;4;2}

=>x thuộc {2;5;3}

b: x+y+z=0

=>x=-y-z; y=-x-z; z=-x-y

\(P=\dfrac{x^2}{y^2+z^2-\left(y+z\right)^2}+\dfrac{y^2}{z^2+x^2-\left(x+z\right)^2}+\dfrac{z^2}{x^2+y^2-\left(x+y\right)^2}\)

\(=\dfrac{x^2}{-2yz}+\dfrac{y^2}{-2xz}+\dfrac{z^2}{-2xy}\)

\(=\dfrac{x^3+y^3+z^3}{2xyz}\cdot\left(-1\right)\)

\(=-\dfrac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)}{2xyz}\)

\(=-\dfrac{\left(-z\right)^3+z^3-3xy\cdot\left(-z\right)}{2xyz}=-\dfrac{3}{2}\)

5 tháng 2 2018

a) câu này đơn giản là tìm giá trị nguyên thôi, câu này bạn tự làm

b) câu B) thì mẫu thức chung là \(x-4\)

cái dấu \(+\) ở chỗ thứ 2 chuyển thành \(-\)

giờ bận rồi để chiều làm tiếp, mình chỉ hướng dẫ vậy thôi