Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giúp tôi giải toán và làm văn
Tất cảToánVăn - Tiếng ViệtTiếng Anh

26 tháng 7 2016 lúc 15:48
I don't need nghĩa là gì , đoán đúng cho 10 nghìn ,cấm tra google dịch
Được cập nhật Vài giây trước


Thống kê hỏi đáp
Báo cáo sai phạm
i don't need la tao ko can

Thống kê hỏi đáp
Báo cáo sai phạm
Ôi trời câu hỏi của bạn trờ thành câu trả lời luôn hả ?

Thống kê hỏi đáp
Báo cáo sai phạm
ngu đâu mà trả lời .
hứ

10 tháng 3 lúc 14:50
Choa≥0,b≥0 Chứng minh bất đẳng thức Cauchy : a+b2 ≥√ab
Được cập nhật 2 phút trước


Thống kê hỏi đáp
Báo cáo sai phạm
BĐT tương đương :
a+b≥2√ab
⇔(a+b)2≥4ab
⇔(a−b)2≥0 ( luôn đúng )
Vậy ta có đpcm
Dấu "=" xảy ra ⇔a=b


\(\dfrac{-7\sqrt{x}+7}{5\sqrt{x}-1}+\dfrac{2\sqrt{x}-2}{\sqrt{x}+2}+\dfrac{39\sqrt{x}+12}{5x+9\sqrt{x}-2}\\ =\dfrac{-7\sqrt{x}+7}{5\sqrt{x}-1}+\dfrac{2\sqrt{x}-2}{\sqrt{x}+2}+\dfrac{39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}\\ =\dfrac{\left(-7\sqrt{x}+7\right)\left(\sqrt{x}+2\right)}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\dfrac{\left(2\sqrt{x}-2\right)\left(5\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(5\sqrt{x}-1\right)}+\dfrac{39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}\)
\(=\dfrac{-7x-14\sqrt{x}+7\sqrt{x}+14+10x-2\sqrt{x}-10\sqrt{x}+2+39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}\\ =\dfrac{3x+20\sqrt{x}+28}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}=\dfrac{\left(\sqrt{x}+2\right)\cdot\left(3\sqrt{x}+14\right)}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}+14}{5\sqrt{x}-1}\)

a) Với \(x\ge0;x\ne1\)
\(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(A=\frac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(A=\frac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{15\sqrt{x}-11-\left(3x-9\sqrt{x}-2\sqrt{x}-6\right)-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}-1\right)\left(-5\sqrt{x}+2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
Vậy : \(A=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
b) \(A=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}=\frac{-5\left(\sqrt{x}+3\right)+17}{\sqrt{x}+3}=-5+\frac{17}{\sqrt{x}+3}\)
\(A_{max}\Leftrightarrow\left(\frac{17}{\sqrt{x}+3}\right)_{max}\)
Vì \(x\ge0;x\ne1\Rightarrow\hept{\begin{cases}\sqrt{x}\ge0\\\frac{17}{\sqrt{x}+3}>0\end{cases}A_{max}\Leftrightarrow}\left(\sqrt{x}+3\right)_{min}\Leftrightarrow\sqrt{x}_{min}\Leftrightarrow x=0\)
Vậy : \(A_{max}=\frac{17}{3}\Leftrightarrow x=0\)
c,d chưa làm được .-.
c) Để \(A=\frac{1}{2}\)
<=> \(\frac{-5\sqrt{x}+2}{\sqrt{x}+3}=\frac{1}{2}\)
<=> \(-10\sqrt{x}+4=\sqrt{x}+3\)
<=> \(-11\sqrt{x}=-1\)
<=> \(\sqrt{x}=\frac{1}{11}\)
<=> \(x=\frac{1}{121}\left(tm\right)\)
Vậy ...
d) \(A\le\frac{2}{3}\)
<=> \(\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\le\frac{2}{3}\)
<=> \(\frac{-5\sqrt{x}+2}{\sqrt{x}+3}-\frac{2}{3}\le0\)
<=> \(\frac{-15\sqrt{x}+6-2\sqrt{x}-6}{3\sqrt{x}+9}\le0\)
<=> \(\frac{-17\sqrt{x}}{3\sqrt{x}+9}\le0\)
Vì \(\hept{\begin{cases}-17\sqrt{x}\le0\\3\sqrt{x}+9>0\end{cases}}\) \(\Rightarrow\frac{-17\sqrt{x}}{3\sqrt{x}+9}\le0\)(luôn đúng)
=> Ta có ĐPCM

a. \(C=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\frac{2\sqrt{x}-9-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
b. C=\(\frac{\sqrt{x}+1}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
C nguyên \(\Leftrightarrow\sqrt{x}-3\inƯ\left(4\right)\Rightarrow\sqrt{x}-3\in\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{1;2;4;5;7\right\}\Rightarrow x\in\left\{1;4;16;25;49\right\}\)
Vậy \(x\in\left\{1;4;16;25;49\right\}\)thì C nguyên

a) \(P=\frac{3\left(x+\sqrt{x}-3\right)}{x+\sqrt{x}-2}+\frac{\sqrt{x}+3}{\sqrt{x}+2}-\frac{\sqrt{x}-2}{\sqrt{x}-1}\) \(\left(x\ge0;x\ne1\right)\)
\(P=\frac{3x+3\sqrt{x}-9}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{3x+3\sqrt{x}-9+x+2\sqrt{x}-3-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{3x+5\sqrt{x}-8}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{3\sqrt{x}+8}{\sqrt{x}+2}\)
b) \(P=\frac{7}{2}\)
\(\Leftrightarrow\frac{3\sqrt{x}+8}{\sqrt{x}+2}=\frac{7}{2}\)
\(\Rightarrow6\sqrt{x}+16=7\sqrt{x}+14\)
\(\Leftrightarrow\sqrt{x}=2\Rightarrow x=4\)

Thuy Duong Nguyen đánh đề cẩn thận hơn bạn nhé
Lời giải :
a) ĐKXĐ : \(x\ne1\)
\(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(A=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}+3\right)\left(2-3\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\frac{15\sqrt{x}-11-3x+6-7\sqrt{x}-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\frac{\left(\sqrt{x}-1\right)\left(-5\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\frac{2-5\sqrt{x}}{\sqrt{x}+3}\)
b) \(x=3-2\sqrt{2}=2-2\sqrt{2}+1=\left(\sqrt{2}-1\right)^2\)
\(\Leftrightarrow\sqrt{x}=\sqrt{2}-1\)
Khi đó \(A=\frac{2-5\left(\sqrt{2}-1\right)}{\sqrt{2}-1+3}\)
\(A=\frac{2-5\sqrt{2}+5}{\sqrt{2}+2}=\frac{7-5\sqrt{2}}{\sqrt{2}+2}\)
c) \(A=\frac{1}{2}\)
\(\Leftrightarrow\frac{2-5\sqrt{x}}{\sqrt{x}+3}=\frac{1}{2}\)
\(\Leftrightarrow2\left(2-5\sqrt{x}\right)=\sqrt{x}+3\)
\(\Leftrightarrow4-10\sqrt{x}-\sqrt{x}-3=0\)
\(\Leftrightarrow1-11\sqrt{x}=0\)
\(\Leftrightarrow11\sqrt{x}=1\)
\(\Leftrightarrow\sqrt{x}=\frac{1}{11}\)
\(\Leftrightarrow x=\frac{1}{121}\)( thỏa )
d) A nguyên \(\Leftrightarrow2-5\sqrt{x}⋮\sqrt{x}+3\)
\(\Leftrightarrow-5\left(\sqrt{x}+3\right)+17⋮\sqrt{x}+3\)
Vì \(-5\left(\sqrt{x}+3\right)⋮\sqrt{x}+3\)
\(\Rightarrow17⋮\sqrt{x}+3\)
\(\Rightarrow\sqrt{x}+3\inƯ\left(17\right)=\left\{17\right\}\)( vì \(\sqrt{x}+3\ge3\))
\(\Leftrightarrow\sqrt{x}=14\)
\(\Leftrightarrow x=196\)( thỏa )
Vậy....
\(a,ĐKXĐ:\orbr{\begin{cases}x+2\sqrt{x}+3\ne0\\\sqrt{x}+3\ne0\end{cases}}\)
\(\Leftrightarrow\orbr{ }\sqrt{x}\ne-3\)
Rút gọn: p/s: sau phân số thứ 2 ở mẫu ko có x à? Bạn chép đề sai?