\(P=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{2016^2}\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2018

câu a nè:

9 tháng 5 2018

Giúp mình nha mấy bạn

21 tháng 4 2019

 Ta có:

 \(\frac{1}{3^2}< \frac{1}{2.3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}\)

\(\frac{1}{5^2}< \frac{1}{4.5}\)

....

\(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}\)

                                                                      \(-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

                             => đpcm                                                             

21 tháng 4 2019

Thank bn Hoàng đạo thứ 7 nhé. Cho 3 k r nhé hihi

29 tháng 4 2018

\(a,\left(4\frac{1}{2}-\frac{2}{5}x\right):1\frac{3}{4}=\frac{11}{14}\)

\(\Rightarrow\left(\frac{9}{2}-\frac{2}{5}x\right):\frac{7}{4}=\frac{11}{4}\)

\(\Rightarrow\left(\frac{9}{2}-\frac{2}{5}x\right)=\frac{11}{4}\cdot\frac{7}{4}\)

\(\Rightarrow\left(\frac{9}{2}-\frac{2}{5}x\right)=\frac{77}{16}\)

\(\Rightarrow\frac{9}{2}-\frac{2}{5}x=\frac{77}{16}\)

\(\Rightarrow-\frac{2}{5}x=\frac{77}{16}-\frac{9}{2}\)

\(\Rightarrow-\frac{2}{5}x=\frac{5}{16}\)

\(\Rightarrow x=\frac{5}{16}:\left(-\frac{2}{5}\right)\)

\(\Rightarrow x=-\frac{25}{32}\)

\(b,\frac{2}{3}\cdot x-\frac{2}{5}x=\frac{9}{3}\)

\(\Rightarrow x\left(\frac{2}{3}-\frac{2}{5}\right)=\frac{8}{3}\)

\(\Rightarrow x\cdot\frac{4}{15}=\frac{8}{3}\)

\(\Rightarrow x=\frac{8}{3}:\frac{4}{15}\)

\(\Rightarrow x=10\)

29 tháng 4 2018

\(c,\frac{-2}{3}|x|+1\frac{1}{2}=\frac{2}{5}\)

\(\Rightarrow\frac{-2}{3}|x|+\frac{3}{2}=\frac{2}{5}\)

\(\Rightarrow\frac{-2}{3}|x|=\frac{2}{5}-\frac{3}{2}\)

\(\Rightarrow\frac{-2}{3}|x|=-\frac{11}{10}\)

\(\Rightarrow|x|=\frac{-11}{10}:\frac{-2}{3}\)

\(\Rightarrow|x|=\frac{33}{20}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{33}{20}\\x=-\frac{33}{20}\end{cases}}\)

\(d,|2x-\frac{1}{3}|+\frac{1}{6}=\frac{3}{4}\)

\(\Rightarrow|2x-\frac{1}{3}|=\frac{3}{4}-\frac{1}{6}\)

\(\Rightarrow|2x-\frac{1}{3}|=\frac{7}{12}\)

\(\Rightarrow\orbr{\begin{cases}2x-\frac{1}{3}=\frac{7}{12}\\2x-\frac{1}{3}=-\frac{7}{12}\end{cases}\Rightarrow\orbr{\begin{cases}2x=\frac{11}{12}\\2x=-\frac{1}{4}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{11}{24}\\x=-\frac{1}{8}\end{cases}}}\)

29 tháng 8 2020

Bài làm:

Xét: \(\frac{1}{5^2}>\frac{1}{5.6}\) ; \(\frac{1}{6^2}>\frac{1}{6.7}\) ; ... ; \(\frac{1}{100^2}>\frac{1}{100.101}\)

=> \(A>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)

\(=\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{1}{6}\) (1)

Lại có: \(\frac{1}{5^2}< \frac{1}{4.5}\) ; \(\frac{1}{6^2}< \frac{1}{5.6}\) ; ... ; \(\frac{1}{100^2}< \frac{1}{99.100}\)

=> \(A< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\) (2)

Từ (1) và (2) => \(\frac{1}{6}< A< \frac{1}{4}\)

10 tháng 5 2018

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}< 1\)

\(\Rightarrow A< 1\left(đpcm\right)\)

10 tháng 5 2018

Trần Cao Vỹ Lượng bạn giải hay lắm

18 tháng 3 2021

a) Vì n\(\inℕ\)nên n + 1 \(\inℕ\)và 2n + 3\(\inℕ\).

Gọi d \(\in\)ƯCLN ( n + 1 , 2n + 3 )

\(\Rightarrow n+1⋮d\)và \(2n+3⋮d\)

\(\Rightarrow\left(2n+3\right)-2\left(n+1\right)⋮d\)

\(\Rightarrow2n+3-2n-2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\in\left\{1;-1\right\}\)

\(\Rightarrow\frac{n+1}{2n+3}\)là phân số tối giản .

                           Vậy \(\frac{n+1}{2n+3}\)tối giản \(\forall n\inℕ\).

18 tháng 3 2021

b) TƯƠNG TỰ CÂU (a)

19 tháng 5 2019

\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)

\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}\)

\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{98}{99}.\frac{99}{100}\)

\(\Rightarrow A^2>\frac{1}{100}=\frac{1}{10^2}\)

Vậy \(A>\frac{1}{10}\)

19 tháng 5 2019

\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}\)

\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{9998}{9999}\)

\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{9998}{9999}.\frac{9999}{10000}\)

\(\Rightarrow A^2>\frac{1}{10000}=\frac{1}{100^2}\)

\(VayA>\frac{1}{100}=B\)