\(\frac{1}{1^2}\)+\(\frac{1}{2^2}\)+......+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2020

a) Ta có A = \(\frac{2^{2018}+1}{2^{2019}+1}\)

=> 2A = \(\frac{2^{2019}+2}{2^{2019}+1}=1+\frac{1}{2^{2019}+1}\)

Lại có B = \(\frac{2^{2017}+1}{2^{2018}+1}\)

=> 2B = \(\frac{2^{2018}+2}{2^{2018}+1}=\frac{2^{2018}+1+1}{2^{2018}+1}=1+\frac{1}{2^{2018}+1}\)

Vì \(\frac{1}{2^{2018}+1}>\frac{1}{2^{2019}+1}\Rightarrow1+\frac{1}{2^{2018}+1}>1+\frac{1}{2^{2019}+1}\Rightarrow2B>2A\Rightarrow B>A\)

24 tháng 4 2019

\(A< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}=\frac{1}{2^2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)

=> \(A< \frac{1}{2^2}+\frac{1}{2}-\frac{1}{2019}=\frac{3}{4}-\frac{1}{2019}=\frac{3}{4}\)

Vậy A<3/4

24 tháng 4 2019

A< \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2018.2019}\)

=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)

=\(1-\frac{1}{2019}=\frac{2019-1}{2019}=\frac{2018}{2019}\)

24 tháng 6 2020

 P \(=\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right).\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{50^2}\right)\) 

P\(=\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}...\frac{50^2-1}{50^2}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{49.51}{50.50}\)

P\(=\frac{\left(1.2.3...49\right).\left(3.4.5...51\right)}{\left(2.3.4...50\right).\left(2.3.4...50\right)}\)

P\(=\frac{1.51}{50.2}=\frac{51}{100}\)

28 tháng 7 2019

\(Tagọi\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2019}}\) 

là A 

=> a>0

ta thấy \(\frac{1}{5}\)+ a sẽ lớn hơn \(\frac{1}{5}\)(vì a>0)

=> đpcm

25 tháng 2 2018

Ta có : 

\(S=\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^9}\)

\(\Leftrightarrow\)\(3S=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\)

\(\Leftrightarrow\)\(3S-S=\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\right)-\left(\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^9}\right)\)

\(\Leftrightarrow\)\(2S=\frac{1}{3}-\frac{1}{3^9}\)

\(\Leftrightarrow\)\(2S=\frac{3^8-1}{3^9}\)

\(\Leftrightarrow\)\(S=\frac{3^8-1}{2.3^9}\)

Ở đây mk chỉ ghi \(...\) cho nhanh nếu bạn làm vào vở thì ghi đầy đủ ra nhé 

30 tháng 4 2019

bạn còn on ko

a, M=1/1.2+1/2.3+...+1/49.50
M=1−1/2+1/2−1/3+...+1/49−1/50
M=1−1/50<1

Vậy M<1

16 tháng 6 2019

\(a,\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\frac{1}{1}-\frac{1}{50}=\frac{49}{50}< 1\)

\(=>M< 1\)