Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=12\sqrt{2x}\)
b: \(=6-4\sqrt{3}+4\sqrt{3}-8=-2\)
c: \(=\sqrt{2}+1+2-\sqrt{2}=3\)
d: \(=\dfrac{1}{\sqrt{2}}\cdot\left(\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}+2\sqrt{3}\right)=0\)
f: \(=\sqrt{2}-8\sqrt{6}-\sqrt{2}+2\sqrt{6}=-6\sqrt{6}\)
\(a.\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}-\dfrac{3}{3-\sqrt{6}}=\dfrac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}-\dfrac{\sqrt{3}.\sqrt{3}}{\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}=\sqrt{6}-\dfrac{\sqrt{3}}{\sqrt{3}-\sqrt{2}}=\dfrac{3\sqrt{2}-3\sqrt{3}}{\sqrt{3}-\sqrt{2}}=\dfrac{-3\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}=-3\) \(b.\left(2\sqrt{2}-\sqrt{3}\right)^2-2\sqrt{3}\left(\sqrt{3}-2\sqrt{2}\right)=\left(2\sqrt{2}-\sqrt{3}\right)\left(2\sqrt{2}+\sqrt{3}\right)=8-3=5\) \(c.\left(\dfrac{1}{3-\sqrt{5}}-\dfrac{1}{3+\sqrt{5}}\right):\dfrac{5-\sqrt{5}}{\sqrt{5}-1}=\dfrac{3+\sqrt{5}-3+\sqrt{5}}{9-5}:\sqrt{5}=\dfrac{2\sqrt{5}}{4}.\dfrac{1}{\sqrt{5}}=\dfrac{\sqrt{5}}{2}.\dfrac{1}{\sqrt{5}}=\dfrac{1}{2}\) \(d.\left(3-\dfrac{a-2\sqrt{a}}{\sqrt{a}-2}\right)\left(3+\dfrac{\sqrt{ab}-3\sqrt{a}}{\sqrt{b}-3}\right)=\left(3-\sqrt{a}\right)\left(3+\sqrt{a}\right)=9-a\)
a: \(=\sqrt{5}+2+\sqrt{3}+1-\sqrt{5}-\sqrt{3}=3\)
b: \(=\left(-\sqrt{5}-2+\sqrt{5}-\sqrt{3}\right)\cdot\left(2\sqrt{3}+3\right)\)
\(=-\sqrt{3}\left(2+\sqrt{3}\right)\cdot\left(2+\sqrt{3}\right)\)
\(=-\sqrt{3}\left(7+4\sqrt{3}\right)=-7\sqrt{3}-12\)
c: \(=\dfrac{\sqrt{2}+\sqrt{3}+2}{\left(\sqrt{2}+\sqrt{3}+2\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}=\dfrac{1}{1+\sqrt{2}}=\sqrt{2}-1\)
a. \(\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)
= \(\sqrt{3-2\sqrt{15}+5}-\sqrt{3+2\sqrt{15}+5}\)
= \(\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{5}\right)^2}\)
= \(\sqrt{5}-\sqrt{3}-\sqrt{3}-\sqrt{5}\)
= \(-2\sqrt{3}\)
b. \(\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}+\dfrac{5-2\sqrt{5}}{2\sqrt{5}-4}\)
= \(\dfrac{\left(\sqrt{15}-\sqrt{5}\right).\left(\sqrt{3}+1\right)}{2}+\dfrac{\left(5-2\sqrt{5}\right).\left(2\sqrt{5}+4\right)}{4}\)
=\(\dfrac{\sqrt{45}+\sqrt{15}-\sqrt{15}-\sqrt{5}}{2}+\dfrac{\left(5-2\sqrt{5}\right).2\left(\sqrt{5}+2\right)}{4}\)
= \(\dfrac{3\sqrt{5}-\sqrt{5}}{2}+\dfrac{\left(5-2\sqrt{5}\right).\left(\sqrt{5}+2\right)}{2}\)
= \(\dfrac{2\sqrt{5}}{2}+\dfrac{5\sqrt{5}+10-10-4\sqrt{5}}{2}\)
= \(\sqrt{5}+\dfrac{\sqrt{5}}{2}\)
= \(\dfrac{3\sqrt{5}}{2}\)
c. \(\left(\dfrac{1}{\sqrt{5}-\sqrt{2}}+\dfrac{1}{\sqrt{5}+\sqrt{2}}\right):\dfrac{1}{\left(\sqrt{2}+1\right)^2}\)
= \(\dfrac{\sqrt{5}+\sqrt{2}+\sqrt{5}-\sqrt{2}}{\left(\sqrt{5}-\sqrt{2}\right).\left(\sqrt{5}+\sqrt{2}\right)}.\left(\sqrt{2}+1\right)^2\)
= \(\dfrac{2\sqrt{5}}{3}.\left(2+2\sqrt{2}+1\right)\)
= \(\dfrac{2\sqrt{5}}{3}.\left(3+2\sqrt{2}\right)\)
= \(\dfrac{6\sqrt{5}+4\sqrt{10}}{3}\)
d. \(\left(\dfrac{2}{\sqrt{3}-1}+\dfrac{3}{\sqrt{3}-2}+\dfrac{15}{3-\sqrt{3}}\right).\dfrac{1}{\sqrt{3}+5}\)
= \(\left(\sqrt{3}+1-3\left(\sqrt{3}+2\right)+\dfrac{5\left(3+\sqrt{3}\right)}{2}\right).\dfrac{1}{\sqrt{3}+5}\)
= \(\left(\sqrt{3}+1-6-3\sqrt{3}+\dfrac{15+5\sqrt{3}}{2}\right).\dfrac{1}{\sqrt{3}+5}\)
= \(\left(-2\sqrt{3}-5+\dfrac{15+5\sqrt{3}}{2}\right).\dfrac{1}{\sqrt{3}+5}\)
= \(\dfrac{-4\sqrt{3}-10+15+5\sqrt{3}}{2}.\dfrac{1}{\sqrt{3}+5}\)
= \(\dfrac{\sqrt{3}+5}{2}.\dfrac{1}{\sqrt{3}+5}\)
= \(\dfrac{1}{2}\)
Nếu đúng cho 1 like nhé!
1) \(\sqrt{12}\)+\(5\sqrt{3}-\sqrt{48}\)
= \(2\sqrt{3}+5\sqrt{3}-4\sqrt{3}\)
= (2+5-4).\(\sqrt{3}\)
= \(3\sqrt{3}\)
2)\(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\)
= \(5\sqrt{5}+2\sqrt{5}-3.3\sqrt{5}\)
= \(5\sqrt{5}+2\sqrt{5}-9\sqrt{5}\)
= \(\left(5+2-9\right).\sqrt{5}\)
= -2\(\sqrt{2}\)
3)\(3\sqrt{32}+4\sqrt{8}-5\sqrt{18}\)
= \(3.4\sqrt{2}+4.2\sqrt{2}-5.3\sqrt{2}
\)
= 12\(\sqrt{2}\) \(+8\sqrt{2}\) \(-15\sqrt{2}\)
= \(\left(12+8-15\right).\sqrt{2}\)
= \(5\sqrt{2}\)
4)\(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}\)
= \(3.2\sqrt{3}-4.3\sqrt{3}+5.4\sqrt{3}\)
= \(6\sqrt{3}-12\sqrt{3}+20\sqrt{3}\)
= \(\left(6-12+20\right).\sqrt{3}\)
= \(14\sqrt{3}\)
5)\(\sqrt{12}+\sqrt{75}-\sqrt{27}\)
= \(2\sqrt{3}+5\sqrt{3}-3\sqrt{3}\)
= \(\left(2+5-3\right).\sqrt{3}\)
= \(4\sqrt{3}\)
6) \(2\sqrt{18}-7\sqrt{2}+\sqrt{162}\)
= \(2.3\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= 6\(\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= \(\left(6-7+9\right).\sqrt{2}\)
= 8\(\sqrt{2}\)
7)\(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\)
= \(3.2\sqrt{5}-2.3\sqrt{5}+4\sqrt{5}\)
= \(6\sqrt{5}-6\sqrt{5}+4\sqrt{5}\)
= \(4\sqrt{5}\)
8)\(\left(\sqrt{2}+2\right).\sqrt{2}-2\sqrt{2}\)
= \(\left(\sqrt{2}\right)^2+2\sqrt{2}-2\sqrt{2}\)
= 2
a: \(=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}=\sqrt{ab}-\sqrt{ab}=0\)
b: \(=\dfrac{\left(\sqrt{x}-2\sqrt{y}\right)^2}{\sqrt{x}-2\sqrt{y}}+\dfrac{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)
\(=\sqrt{x}-2\sqrt{y}+\sqrt{y}=\sqrt{x}-\sqrt{y}\)
c: \(=\sqrt{x}+2-\dfrac{x-4}{\sqrt{x}-2}\)
\(=\sqrt{x}+2-\sqrt{x}-2=0\)
a: \(=\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{2}\sqrt{2}\right)\cdot5\sqrt{6}\)
\(=\left(2\sqrt{6}-4\sqrt{3}+\dfrac{9}{2}\sqrt{2}\right)\cdot5\sqrt{6}\)
\(=60-20\sqrt{18}+\dfrac{45}{2}\sqrt{12}\)
\(=60-60\sqrt{2}+45\sqrt{3}\)
b: \(=\dfrac{\sqrt{5}+\sqrt{2}+\sqrt{5}-\sqrt{2}+3}{3}\cdot\dfrac{1}{3+2\sqrt{2}}\)
\(=\dfrac{2\sqrt{5}+3}{3}\cdot\dfrac{1}{3+2\sqrt{2}}=\dfrac{2\sqrt{5}+3}{9+6\sqrt{2}}\)
a) \(\sqrt{3+2\sqrt{2}}+\sqrt{\left(\sqrt{2}-2\right)^2}\)
\(=\sqrt{\left(\sqrt{2}\right)^2+2\sqrt{2}\cdot1+1^2}+\left|\sqrt{2}-2\right|\)
\(=\sqrt{\left(\sqrt{2}+1\right)^2}-\left(\sqrt{2}-2\right)\)
\(=\left|\sqrt{2}+1\right|-\sqrt{2}+2\)
\(=\sqrt{2}+1-\sqrt{2}+2\)
\(=3\)
b) \(\dfrac{1}{5}\sqrt{50}-2\sqrt{96}-\dfrac{\sqrt{30}}{\sqrt{15}}+12\sqrt{\dfrac{1}{6}}\)
\(=\dfrac{1}{5}\cdot5\sqrt{2}-2\cdot4\sqrt{6}-\sqrt{\dfrac{30}{15}}+\sqrt{\dfrac{144}{6}}\)
\(=\sqrt{2}-8\sqrt{6}-\sqrt{2}+2\sqrt{6}\)
\(=-8\sqrt{6}+2\sqrt{6}\)
\(=-6\sqrt{6}\)
c) \(\left(\dfrac{5-\sqrt{5}}{\sqrt{5}}-2\right)\left(\dfrac{4}{1+\sqrt{5}}+4\right)\)
\(=\left[\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}}-2\right]\left[\dfrac{4\left(1-\sqrt{5}\right)}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}+4\right]\)
\(=\left(\sqrt{5}-1-2\right)\left(\dfrac{4\left(1-\sqrt{5}\right)}{1-5}+4\right)\)
\(=\left(\sqrt{5}-3\right)\left(\sqrt{5}-1+4\right)\)
\(=\left(\sqrt{5}-3\right)\left(\sqrt{5}+3\right)\)
\(=\left(\sqrt{5}\right)^2-3^2\)
\(=-4\)
a) \(\sqrt[]{3+2\sqrt[]{2}}+\sqrt[]{\left(\sqrt[]{2}-2\right)^2}\)
\(=\sqrt[]{2+2\sqrt[]{2}.1+1}+\left|\sqrt[]{2}-2\right|\)
\(=\sqrt[]{\left(\sqrt[]{2}+1\right)^2}+\left(2-\sqrt[]{2}\right)\) \(\left(\left(\sqrt[]{2}\right)^2=2< 2^2=4\right)\)
\(=\left|\sqrt[]{2}+1\right|+2-\sqrt[]{2}\)
\(=\sqrt[]{2}+1+2-\sqrt[]{2}\)
\(=3\)