K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2024

a) *) P(x) có:

- Bậc 3.

- Hạng tử cao nhất: 1

- Hạng tử tự do: 1

*) Q(x) có:

- Bậc 4

- Hạng tử cao nhất: 1

- Hạng tử tự do: -1

b) P(x).A(x) = Q(x)

A(x) = Q(x) : P(x)

= (x⁴ - 1) : (x³ + x² + x + 1)

= (x² - 1)(x² + 1) : [(x³ + x²) + (x + 1)]

= (x - 1)(x + 1)(x² + 1) : [x²(x + 1) + (x + 1)]

= (x - 1)(x + 1)(x² + 1) : [(x + 1)(x² + 1)]

= (x - 1) . [(x + 1) : (x + 1)] . [(x² + 1) : (x² + 1)]

= x - 1

14 tháng 3 2020

P(x) = 3x4 + x- 2x2 + x- 1/4x

Bậc: 4

Hệ số cao nhất: 3

Hệ số tự do: không có :v

Q(x) = 3x4 - 4x3 + 3x2 - 2x2 - 1/4

Bậc: 4

Hệ số cao nhất: 4

Hệ số tự do: 1/4

a) P(x) + Q(x) = 3x4 + x3 - 2x2 + x2 - 1/4x + 3x4 - 4x3 + 3x- 2x2 - 1/4

                       = (3x4 + 3x4) + (x3 - 4x3) + (-2x2 + x2 + 3x2 - 2x2) - 1/4x - 1/4

                       = 6x4 - 3x3 - 1/4x - 1/4

P(x) - Q(x) = (3x4 + x3 - 2x2 + x2 - 1/4x) - (3x4 - 4x3 + 3x2 - 2x2 - 1/4)

                  = 3x4 + x3 - 2x2 + x2 - 1/4x - 3x4 + 4x3 - 3x2 + 2x2 + 1/4

                  = (3x4 - 3x4) + (x3 + 4x3) + (-2x2 + x2 - 3x2 - 2x2) - 1/4x + 1/4

                  = 5x3 - 2x2 - 1/4x + 1/4

Q(x) - P(x) = (3x4 - 4x3 + 3x2 - 2x2 - 1/4) - (3x4 + x3 - 2x2 + x2 - 1/4x)

                  = 3x4 - 4x3 + 3x2 - 2x2 - 1/4 - 3x4 - x3 + 2x2 - x2 + 1/4x

                  = (3x4 - 3x4) + (-4x3 - x3) + (3x2 - 2x2 + 2x2 - x2) + 1/4 + 1/4x

                  = -5x3 + 2x2 - 1/4 + 1/4x

b) M(x) = P(x) - Q(x)

            = 5x3 - 2x2 - 1/4x + 1/4

M(-2) = 5.(-2)3 - 2.(-2)2 - 1/4.(-2) + 1/4

          = -40 - 8 + 1/2 + 1/4

          = -189/4

sai đâu sửa hộ nha

15 tháng 3 2020

đúng rùi ớ

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2  a) Xác định đa thức P(x) và Q(x)  b) Tìm nghiệm của đa thức P(x) và Q(x)  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1...
Đọc tiếp

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:
       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2
  a) Xác định đa thức P(x) và Q(x)
  b) Tìm nghiệm của đa thức P(x) và Q(x)
  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2
Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1 đa thức bậc 5 và có 6 hạng tử
Bài 3: Cho đa thức P(x) = x+ 7x2- 6x3+ 3x4+ 2x2+ 6x- 2x4+ 1
   a) Thu gọn đa thức rồi sắp xếp các số hạng của đa thức theo lũy thừa giảm dần của biến x
   b) Xác định bậc của đa thức, hệ số tự do, hệ số cao nhất
   c) Tính P(-1); P(0); P(1); P(-a)
Bài 4: Cho đa thức bậc hai P(x) = ax2+ bx+ c với a ≠ 0
   a) Chứng tỏ rằng nếu đa thức có nghiệm x = 1 thì sẽ có nghiệm x = \(\dfrac{c}{a}\)
   b) Chứng tỏ rằng nếu đa thức có nghiệm x = -1 thì sẽ có nghiệm x = -\(\dfrac{c}{a} \)

1
7 tháng 4 2018

pan a ban giong bup be lam nhung bup be lam = nhua deo va no del co nao nhe

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn: P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2 a) Xác định đa thức P(x) và Q(x) b) Tìm nghiệm của đa thức P(x) và Q(x) c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2 Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1 đa...
Đọc tiếp

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:
P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2
a) Xác định đa thức P(x) và Q(x)
b) Tìm nghiệm của đa thức P(x) và Q(x)
c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2
Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1 đa thức bậc 5 và có 6 hạng tử
Bài 3: Cho đa thức P(x) = x+ 7x2- 6x3+ 3x4+ 2x2+ 6x- 2x4+ 1
a) Thu gọn đa thức rồi sắp xếp các số hạng của đa thức theo lũy thừa giảm dần của biến x
b) Xác định bậc của đa thức, hệ số tự do, hệ số cao nhất
c) Tính P(-1); P(0); P(1); P(-a)
Bài 4: Cho đa thức bậc hai P(x) = ax2+ bx+ c với a ≠ 0
a) Chứng tỏ rằng nếu đa thức có nghiệm x = 1 thì sẽ có nghiệm x = \(\dfrac{c}{a}\)
b) Chứng tỏ rằng nếu đa thức có nghiệm x = -1 thì sẽ có nghiệm x = -\(\dfrac{c}{a} \)

1
11 tháng 5 2019

Ta có: P(x)+ Q(x)= x^3+ x^2-4x+2(1)

P(x)- Q(x)= x^3-x^2+2x-2(2)

Lấy (1)-(2)

=> P(x)+ Q(x)- P(x)+ Q(x)

= 2Q(x)

=>2Q(x)=(x^3+x^2-4x+2)- (x^3-x^2+2x-2)

=>2Q(x)= 2x^2-6x-2

=> Q(x)= x^2-3x-1

Vậy P(x)=....

7 tháng 5 2018

a)  A(x) = 2x–3x2–3+4x3–x2–2x–5 = \(4x^3-4x^2-4x-8.\)

B(x) = 3x–4x3–1+3x2–5x–3x2\(=-4x^3-2x-1\)

b) M(x) = A(x) + B(x) \(=-4x^2-6x-9\)

c) Để M(x) = –9 => M(x) = \(=-4x^2-6x-9\)= -9

\(=-4x^2-6x=0\)

\(\Leftrightarrow-2x\left(2x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}-2x=0\\2x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\2x=3\Leftrightarrow x=\frac{3}{2}\end{cases}}}\)

d) Ta có: đa thức K(x) = 5x–1

\(\Leftrightarrow K\left(x\right)=5x-1=0\) 

\(\Leftrightarrow5x=1\)

\(\Leftrightarrow x=\frac{1}{5}\)

Vậy....

a ) Q ( x ) = [ P ( x ) + Q ( x ) ] - P ( x ) =  ( x- 2x+ 1 ) - ( x- 3x2+\(\frac{1}{2}\)- x ) = x- 2x+ 1 - x4  + 3x2 - \(\frac{1}{2}\)+ x 

= x-  x- ( 2x2 - 3x) + x + \(\frac{1}{2}\) 

= x-  x4 + x2 + x + \(\frac{1}{2}\) 

16 tháng 5 2015

a) A(x)= -2x\(^6\)+ 5x\(^5\)+ x\(^4\)+ ( 2x + x )

          = -2x\(^6\) + 5x\(^5\)+ x\(^4\)+ 3x

Bậc : 6

b) C(x)= A(x) + B(x)

A(x) + B(x) = -2x\(^6\)+ 5x\(^5\)+ x\(^4\)+3x + 6x\(^6\)- 5 x\(^5\)+2x\(^4\)+ 2x + 1

                 = (-2x\(^6\)+ 6x\(^6\))+(5x\(^5\)- 5x\(^5\))+(x\(^4\)+2x\(^4\))+(3x+2x)+1

                 =4x\(^6\)+3x\(^4\)+5x+1

Bậc :6

c) Đa thức C(x) không có nghiệm( vô nghiệm )

15 tháng 3 2019

2) 

\(F\left(x\right)=\text{ 2^4 + x^3 - 5x^2 + 4x - 12}\)

\(G\left(x\right)=\text{ -2x^4 + 2x^2 - 2x + 6}\)

\(H\left(x\right)=x^3-3x^2+2x+-6\)

a: \(=\dfrac{80}{9}x^3+\dfrac{1}{3}x^2-\dfrac{1}{3}x+18\)

Hệ số cao nhất là 80/9

Hệ số tự do là 18

Bậc là 3

b: \(f\left(3\right)=\dfrac{80}{9}\cdot27+\dfrac{1}{3}\cdot9-\dfrac{1}{3}\cdot3+18=260\)

\(f\left(-3\right)=\dfrac{80}{9}\cdot\left(-27\right)+\dfrac{1}{3}\cdot9+\dfrac{1}{3}\cdot3+18=-218\)

c: f(x)=-28 nên \(\dfrac{80}{9}x^3+\dfrac{1}{3}x^2-\dfrac{1}{3}x+46=0\)

\(\Leftrightarrow x\simeq-1.75\)