K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

gọi số có 2 chữ số đó là: \(\overline{ab}\)

theo đề bài ta có:\(4a-b=17\Rightarrow b=4a-17\)

\(\overline{ab}-\overline{ba}=18\)

\(\Leftrightarrow10a+b-10b-a=18\)

\(\Leftrightarrow9a-9b=18\)

\(\Leftrightarrow a-b=2\)

\(\Leftrightarrow a-\left(4a-17\right)=2\)

\(\Rightarrow-3a=2-17\)

\(\Leftrightarrow-3a=-15\)

\(\Leftrightarrow a=5\)

ta lại có:\(4a-b=17\)

\(4\times5-b=17\)

\(b=3\)

vậy số cần tìm là \(53\)

21 tháng 2 2021

Gọi số cần tìm là \(\overline{ab}\)

  Vì 5 lần chữ số hằng chục lớn hơn chữ số hàng đon vị là 27

Khi đó ta có : 5a - b = 27 

  Vì Nếu viết ngược lại thì được số mới nhỏ hơn số cũa 27 đv

  => \(\overline{ab}-\overline{ba}=27\)

   \(\Leftrightarrow10a+b-10b-a=27\)

    \(\Leftrightarrow9a-9b=27\)

    \(\Leftrightarrow a-b=3\)

Ta có hệ phương trình

  \(\hept{\begin{cases}a-b=3\\5a-b=27\end{cases}}\)

    \(\Leftrightarrow\hept{\begin{cases}a=6\\b=3\end{cases}}\)

  Vậy số cần tìm là 63

30 tháng 10 2015

Gọi chữ số hàng đơn vị là a thì chữ số hàng chục là a + 2

=> Số đó là (a+2)a = 10(a+2) + a = 11a + 20

Theo bài cho ta có:

11a + 20 = a+ (a+2)+ 1

<=> 11a + 20 = 2a+ 4a + 5

<=> 2a2 - 7a -15 = 0 

<=> 2a2 + 3a - 10a - 15 = 0 

<=> a(2a + 3) - 5(2a + 3) = 0

<=> (a - 5)(2a + 3)  = 0 <=> a = 5 hoặc a = -1,5 (Loại vì a là chữ số)

Vậy số đó là 75

25 tháng 3 2022

Xét pt đã cho có \(\Delta=m^2-4.1.\left(-m-1\right)=m^2+4m+4=\left(m+2\right)^2\ge0\)với mọi \(m\inℝ\)

Vậy pt đã cho luôn có 2 nghiệm với mọi \(m\inℝ\)

Theo định lí Vi-ét, ta có \(\hept{\begin{cases}x_1+x_2=-\frac{-m}{1}=m\\x_1x_2=\frac{-m-1}{1}=-m-1\end{cases}}\)

Lại có \(\left|x_1-x_2\right|\ge3\)\(\Leftrightarrow\left(x_1-x_2\right)^2\ge9\)(vì cả 2 vế của BĐT đầu đều lớn hơn 0)

 \(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2\ge9\)\(\Leftrightarrow m^2-4\left(-m-1\right)\ge9\)\(\Leftrightarrow m^2+4m+4\ge9\)\(\Leftrightarrow\left(m+2\right)^2\ge9\)\(\Leftrightarrow\orbr{\begin{cases}m+2\ge3\\m+2\le-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}m\ge1\\m\le-5\end{cases}}\)

Vậy các giá trị của m để pt có 2 nghiệm x1, x2 thỏa mãn \(\left|x_1-x_2\right|\ge3\)là \(\orbr{\begin{cases}m\ge1\\m\le-5\end{cases}}\)

6 tháng 11 2016

Gọi số cần tìm là \(\overline{ab}\), (\(0< a\le9;0\le b\le9;a,b\in N\)

Ta có: 2b=a+1 và \(\overline{ab}\)-\(\overline{ba}\)=27\(\Rightarrow10a-b-10b-a=27\\ 9\left(a-b\right)=27\\ a-b=3\\ a+1-b=4\\ 2b-b=4\\ b=4\)

a=2.4-1=7

vậy số cần tìm là 74

 

bài 1: Trong b​uổi lao động, 15 học sinh nam và nữ đã trồng được tất cả 180 cây. Biết rằng số cây các bạn nam trồng được số cây các bạn nữ trồng và mỗi bạn nam trồng nhiều hơn mỗi bạn nữ là 5 cây. Tính số bạn nam và nữbài 2: 1. Cho hệ phương trình \(\hept{\begin{cases}ax-y=2\\x+ay=3\end{cases}}\)a) tìm a để hệ phương trình có nghiệm duy nhất và tìm nghiệm đób) tìm a để hệ phương...
Đọc tiếp

bài 1: Trong b​uổi lao động, 15 học sinh nam và nữ đã trồng được tất cả 180 cây. Biết rằng số cây các bạn nam trồng được số cây các bạn nữ trồng và mỗi bạn nam trồng nhiều hơn mỗi bạn nữ là 5 cây. Tính số bạn nam và nữ

bài 2: 

1. Cho hệ phương trình \(\hept{\begin{cases}ax-y=2\\x+ay=3\end{cases}}\)

a) tìm a để hệ phương trình có nghiệm duy nhất và tìm nghiệm đó

b) tìm a để hệ phương trình vô nghiệm

2. cho hệ phương trình \(\hept{\begin{cases}ax-2y=a\\-2x+y=a+1\end{cases}}\)

a) tìm a để hệ phương trình có nghiệm duy nhất, khi đó tính x;y theo a

b) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn: x-y=1

c) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn x và y là các số nguyên

bài 3:

1.Chứng minh với mọi giá trị của m thì hệ phương trình \(\hept{\begin{cases}\left(m-1\right)x+y=2\\mx+y=m+1\end{cases}}\)(m là tham số) luôn có nghiệm duy nhất (x;y) thỏa mãn: \(2x+y\le3\)

2. Xác định giá trị của m để hệ phương trình \(\hept{\begin{cases}mx+5y=3\\x-3y=5\end{cases}}\)vô nghiệm

 

 

0