Tìm các giá trị của n để...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 3 2024

Lời giải:

Gọi $d=ƯCLN(n-5,n-2)$

$\Rightarrow n-5\vdots d; n-2\vdots d$

$\Rightarrow (n-2)-(n-5)\vdots d$

$\Rightarrow 3\vdots d$

Để ps tối giản thì $d\neq 3$

Điều này xảy ra khi $n-2\not\vdots 3$

$\Leftrightarrow n\neq 3k+2$ với mọi $k$ tự nhiên, $k\neq 0$

31 tháng 1 2016

1,Gọi UCLN(n+1,n+2)=d

Ta có:n+1 chia hết cho d

         n+2 chia hết cho d

=>(n+2)-(n+1) chia hết cho d

=>1 chia hết cho d

=>d=1

Vậy \(\frac{n+1}{n+2}\)tối giản

4 tháng 5 2016

bó tay

10 tháng 7 2016

vyitclucryzjtfuyddiydiydxdgzth

28 tháng 5 2015

1. a) Để phân số có giá trị nguyên thì n + 9 phải chia hết cho n - 6 

Ta có: n + 9 chia hết cho n - 6

=> n - 6 + 15 chia hết cho n - 6

=> 15 chia hết cho n - 6.

=> n - 6 thuộc Ư(15) = {1; 3; 5; 15}

=> n thuộc {7; 9; 11; 21}

2. Giả sử \(\frac{12n+1}{30n+2}\)không phải là phân số tối giản 

=> 12n + 1 và 30n + 2 có UCLN là d (d > 1) 
d là ước chung của 12n + 1 và 30n + 2

=> d là ước của 30n + 2 - 2(12n + 1) = 6n 
=> d là ước chung của 12n + 1 và 6n => d là ước của 12n + 1 - 2.6n = 1 
d là ước của 1 mà d > 1 (vô lý) => điều giả sử trên sai => đpcm. 

31 tháng 1 2018

chứng minh 12n + 1/30n + 2

gọi a là ƯC của 12n + 1 và  30n + 2

=> 12n + 1 chia hết cho a

=> 12n chia hết cho a

     1 chia hết cho a

=> a = 1

vậy 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau

nên 12n + 1/30n + 2 là phân số tối giản (điều phải chứng minh)

4 tháng 5 2015

1) Gọi d= ƯCLN(2n +1; 3n+2)

=> 2n + 1 chia hết cho d => 3.(2n+1) chia hết cho d

3n+2 chia hết cho d => 2.(3n+2) chia hết cho d

=> 2.(3n+2) - 3.(2n+1) chia hết cho d

=> 1 chia hết cho d => d = 1 => 2n + 1 và 3n + 2 là nguyên tố cùng nhau => ps đã cho tối giản

2) Để A thuộc Z thì n+ 2 phải chia hết cho n - 5

=> (n+ 2) - (n-5) chia hết cho n - 5

=> 7 chia hết cho n - 5 hay n - 5 thuộc Ư(7) = {-1;1; 7;-7}

n-5-11-77
n46-212

Vậy n \(\in\) {-2;4;6;12}

4 tháng 5 2015

1) Gọi d= ƯCLN(2n +1; 3n+2)

=> 2n + 1 chia hết cho d => 3.(2n+1) chia hết cho d

3n+2 chia hết cho d => 2.(3n+2) chia hết cho d

=> 2.(3n+2) - 3.(2n+1) chia hết cho d

=> 1 chia hết cho d => d = 1 => 2n + 1 và 3n + 2 là nguyên tố cùng nhau => ps đã cho tối giản

2) Để A thuộc Z thì n+ 2 phải chia hết cho n - 5

=> (n+ 2) - (n-5) chia hết cho n - 5

=> 7 chia hết cho n - 5 hay n - 5 thuộc Ư(7) = {-1;1; 7;-7}

n-5-11-77
n46-212

Vậy n $\in$∈ {-2;4;6;12}

kết bạn mình nha

4 tháng 5 2020

Mik học lớp 6 nhưng lại quên mất câu trả lời rồi!

sorry bạn nha!

4 tháng 5 2020

1. Gọi d là ƯC(n - 5 ; 3n - 14)

\(\Rightarrow\hept{\begin{cases}n-5⋮d\\3n-14⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(n-5\right)⋮d\\3n-14⋮d\end{cases}\Rightarrow}}\hept{\begin{cases}3n-15⋮d\\3n-14⋮d\end{cases}}\)

=> ( 3n - 15 ) - ( 3n - 14 ) chia hết cho d

=> 3n - 15 - 3n + 14 chia hết cho d

=> ( 3n - 3n ) + ( 14 - 15 ) chia hết cho d

=> 0 + ( -1 ) chia hết cho d

=> -1 chia hết cho d

=> d = 1 hoặc d = -1

=> ƯCLN(n - 5 ; 3n - 14) = 1

=> \(\frac{n-5}{3n-14}\)tối giản ( đpcm )

2. Gọi phân số cần tìm là \(\frac{a}{b}\)

Theo đề bài ta có : \(\frac{a}{b}=\frac{5}{6}\)và \(a+b=88\)

=> \(\frac{a}{5}=\frac{b}{6}\)và \(a+b=88\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a}{5}=\frac{b}{6}=\frac{a+b}{5+6}=\frac{88}{11}=8\)

\(\frac{a}{5}=8\Rightarrow a=40\)

\(\frac{b}{6}=8\Rightarrow b=48\)

=> \(\frac{a}{b}=\frac{40}{48}\)

Vậy phân số cần tìm là \(\frac{40}{48}\)

3. \(\frac{n+2}{n-1}=\frac{n-1+3}{n-1}=1+\frac{3}{n-1}\)

Để \(\frac{n+2}{n-1}\)có giá trị nguyên => \(\frac{3}{n-1}\)có giá trị nguyên

=> \(3⋮n-1\)

=> \(n-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

=> \(n\in\left\{2;0;4;-2\right\}\)

27 tháng 2 2017

\(A=\frac{n+1}{n-3}=\frac{\left(n-3\right)+4}{n-3}\)

Vì \(n-3⋮n-3\) . Để \(\frac{\left(n-3\right)+4}{n-3}\) là phân số tối giản <=> 4 không chia hết cho n - 3

\(\Rightarrow n-3\ne4k\) ( k thuộc N) \(\Rightarrow n\ne4k+3\)

Vậy với \(n\ne4k+3\) ( k thuộc N) thì \(A=\frac{n+1}{n-3}\) là phân số tối giản 

15 tháng 4 2017

\(A=\frac{n+1}{n-3}=\frac{\left(n-3\right)+4}{n-3}\)

Vì n - 3 \(⋮\)n - 3 nên \(\frac{\left(n-3\right)+4}{n-3}\)là phân số tối giản. Suy ra 4 không chia hết cho n -3

\(=>n-3\ne4k\left(k\in N\right)=>4k+3\)

Vậy \(n\ne4k+3\left(k\in N\right)=>A=\frac{n+1}{n-3}\)là phân số tối giản

Ủng hộ ! 

5 tháng 2 2016

{-1;2;4;7} , ủng hộ mk nha

5 tháng 2 2016

van anh ta trình bày ra bn ơi

14 tháng 4 2015

a, mẫu số khác 0 -> n khác 1. Vì 5 là số nguyên tố nên muôn A tối giản ( tử số và mẫu số ko cùng chia hết cho số nào khác 1 ) thì 5 ko chia hết cho n-1 hoặc n-1 ko đc chia hết cho 5.-> n khác 5k+1 ( k thuộc Z)

b. Gọi UCLN (n,n+1) = d -> n chia hết cho d; n+1 chia hết cho d 

->(n+1) - n chia hết cho d -> 1 chia hết cho d -> d=1

UCLN(n,n+1) = 1 thì phân số tối giản

c. A= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +....+1/49 - 1/50

= 1- 1/50 <1 ( Vì trừ đi 1 số lớn hơn 0)

 

14 tháng 4 2015

b;Gọi ƯCLN (n;n+1) là :d

ta có :n chia hết cho d;n+1 chia hết cho d

      => n+1 - n chia hết cho d

      => 1 chia hết cho d

      =>1=d

vậy \(\frac{n}{n+1}\)

     tối giản