K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2015

B = (-x-2)4 + 5( x+2)2 = ( x+2)4 +5(x+2)2 >/ 0

=> Min B = 0  <=> x+2 =0 => x =-2

3 tháng 12 2015

Tìm giá trị nhỏ nhất của B =  (-x-2)4 + 5(x+2)

+Vì (x+2)^2 > hoặc = 0 => (x+2)2 min =0

=>5(x+2)2 min =0

+Vì (-x-2)4 > hoặc = 0 => (-x-2)4min=  0

=> B min =0 <=> x= -2

 

21 tháng 3 2017

thầy mình bảo phân tích cách này thành nhân tử rồi nhớ nghiệm và máy tính mà bấm chứ chắc cái này cao siêu quá chưa đến lượt bọn mình giải đâu

11 tháng 4 2017

P=-15 nha

12 tháng 4 2017

cách làm thế nào vậy

18 tháng 3 2017

Dịch: Tìm giá trị của k nếu :\(x^3+kx^2+\left(4-k\right)x-35⋮\left(x-7\right)\)

=>x-7=0=>x=7 => Là nghiệm của phương trình .

Thế x=7 vào biểu thức , ta có :

\(7^3+k.7^2+\left(4-k\right).7-35\)

=\(343+49k+28-7k-35=>42k=-336=>k=-8\)

Vậy k=-8

14 tháng 11 2015

Dịch: Tìm giá trị nhỏ nhất của \(9x^2-6-6x\)

Ta có: \(9x^2-6-6x=9x^2-6x-6=\left(3x-1\right)^2-7\ge-7\)

Dấu  \(''=''\)xảy ra \(\Leftrightarrow\left(3x-1\right)^2=0\Leftrightarrow3x-1=0\Leftrightarrow x=\frac{1}{3}\)

Vậy, Giá trị nhỏ nhất của đa thức \(9x^2-6-6x\) là \(-7\Leftrightarrow x=\frac{1}{3}\)

=> The minimum value of 9x2-6-6x is -7

 

31 tháng 8 2018

a) A = \(2x^2+x-1=2\left(x^2+\frac{1}{2}x+\frac{1}{16}\right)\)\(-\frac{9}{8}=2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\)

\(\left(x+\frac{1}{4}\right)^2\ge0\forall x\Leftrightarrow2\left(x+\frac{1}{4}\right)^2\ge0\forall x\Leftrightarrow2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\forall x\Leftrightarrow A\ge-\frac{9}{8}\)

Dấu = xảy ra \(\Leftrightarrow\)\(x+\frac{1}{4}=0\Leftrightarrow x=-\frac{1}{4}\)

Vậy minA =\(-\frac{9}{8}\)khi \(x=-\frac{1}{4}\).

b) B=\(5x-3x^2+2=-3\left(x^2-\frac{5}{3}x+\frac{25}{36}\right)+\frac{49}{12}=-3\left(x-\frac{5}{6}\right)^2+\frac{49}{12}\)

\(\left(x-\frac{5}{6}\right)^2\ge0\forall x\Leftrightarrow-3\left(x-\frac{5}{6}\right)^2\le0\forall x\Leftrightarrow-3\left(x-\frac{5}{6}\right)^2+\frac{49}{12}\le\frac{49}{12}\forall x\Leftrightarrow B\le\frac{49}{12}\forall x\)

Dấu = xảy ra \(\Leftrightarrow x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)

Vậy maxB = \(\frac{49}{12}\)khi \(x=\frac{5}{6}\).

8 tháng 3 2017

Bài này không khó cách làm thế này:

x2+y2+2x+2y+2xy+5 = (x2 + y2 +1 +2x + 2y+ 2xy)+4

= (x + y +1 )2 +4

Ta có ( x + y +1)2 >= 0 \(\Rightarrow\) ( x +y +1)2 +4 >= 4

Dấu "=" xảy ra khi và chỉ khi x=y=-0,5

Vậy Min(x+y+1)2 = 4 khi và chỉ khi x=y=-0,5.

Xong rồi đó. Có gì sai sót các bạn góp ý nhé.

8 tháng 3 2017

x2 + y2 + 2x + 2y + 2xy + 5

= x2 + y2 + 12 + 2x + 2y + 2xy + 4

= (x + y + 1)2 + 4 \(\ge\) 4

NV
16 tháng 7 2020

Let \(A=x^2+2y^2+2x-4\)

From condition, we have: \(y^2=7-x^2\)

Therefore: \(A=x^2+2\left(7-x^2\right)+2x-4\)

\(\Rightarrow A=-x^2+2x+10=-\left(x-1\right)^2+11\le11\)

\(\Rightarrow A_{max}=11\) when \(\left\{{}\begin{matrix}x=1\\y^2=6\end{matrix}\right.\)