Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=x^2y+y+xy^2-x\) (hẳn đề là vậy)
\(A=xy\left(x+y\right)+\left(y-x\right)\)
\(A=\left(-5\right).2\left(-5+2\right)+2+5\)
\(A=30+7=37\)
b) \(B=3x^3-2y^3-6x^2y^2+xy\)
\(B=3.\left(\frac{2}{3}\right)^3-2.\left(\frac{1}{2}\right)^3-6.\left(\frac{2}{3}\right)^2.\left(\frac{1}{2}\right)^2+\frac{2}{3}.\frac{1}{2}\)
\(B=\frac{8}{9}-\frac{1}{4}-\frac{2}{3}+\frac{1}{3}\)
\(B=\frac{11}{36}\)
c) \(C=2x+xy^2-x^2y-2y\)
\(C=2.\left(-\frac{1}{2}\right)+\left(-\frac{1}{2}\right).\left(-\frac{1}{3}\right)^2-\left(-\frac{1}{2}\right)^2.\left(-\frac{1}{3}\right)-2.\left(-\frac{1}{3}\right)\)
\(C=-1-\frac{1}{18}+\frac{1}{12}+\frac{2}{3}\)
\(C=-\frac{11}{36}\)
a: \(A=4\cdot15^2-70^2=-4000\)
b: \(B=x^2+2x\left(y+1\right)+\left(y+1\right)^2\)
\(=\left(x+y+1\right)^2\)
\(=100^2=10000\)
c: \(C=b^2-3b+a^2+3a-2ab\)
\(=\left(a-b\right)^2+3\left(a-b\right)\)
\(=\left(a-b\right)\left(a-b+3\right)\)
\(=\left(-5\right)\cdot\left(-5+3\right)=\left(-5\right)\cdot\left(-2\right)=10\)
d: \(D=\left(x-y\right)^3+3xy\left(x-y\right)+3xy\)
\(=\left(-1\right)^3-3xy+3xy\)
=-1
a, \(A=x^3y\left(x^4-y^3\right)-x^2y\left(x^5-y^3\right)\)
\(=x^7y-x^3y^4-x^7y+x^2y^3\)
\(=-x^3y^4+x^2y^3\)
\(=-x^2y^3\left(xy+1\right)\)
Thay x = -1 ; y = 2 ta có:
\(-\left(-1\right)^2.2^3\left(\left(-1\right).2+1\right)=-1.8\left(-2+1\right)=-8.-1=8\)
b, \(B=x^3y^3\left(x^4-y^4\right)-x^3y^4\left(x^2-y^3\right)\)
\(=x^7y^3-x^3y^7-x^5y^6+x^3y^7\)
\(=x^7y^3-x^5y^6\)
\(=x^5y^3\left(x^2-y^3\right)\)
Thay x=1 ; y =2 ta có :
\(1^5.2^3\left(1^2-2^3\right)=1.8\left(1-8\right)=8.\left(-7\right)=-56\)
a: \(=n^3+2n^2+3n^2+6n-n-2-n^3+5\)
\(=5n^2+5n+3⋮̸5\)
b:\(=6n^2+30n+n+5-6n^2+3n-10n+5\)
\(=24n+10=2\left(12n+5\right)⋮2\)
d: \(=4x^2y^2-2x^2y+2xy^2-xy-4x^2y^2+xy\)
\(=-2\left(x^2y-xy^2\right)⋮2\)
a: \(xy=\dfrac{\left(x-y\right)^2-x^2-y^2}{-2}=\dfrac{5^2-15}{-2}=\dfrac{10}{-2}=-5\)
\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)\)
\(=5^3+3\cdot5\cdot\left(-5\right)\)
=125-75=50
b: \(8x^3+y^3=\left(2x+y\right)^3-3\cdot2x\cdot y\left(2x+y\right)\)
\(=3^3-6\cdot23\cdot3\)
=27-18x23
=-387
Ta có: \(\left(x^3-x^2y+xy^2-y^3\right)\left(x+y\right)\)
\(=\left[x^2\left(x-y\right)+y^2\left(x-y\right)\right]\left(x+y\right)\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=x^4-y^4=2^4-\left(\dfrac{1}{2}\right)^4=16-\dfrac{1}{16}=\dfrac{255}{16}\)