Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 4 : a. 2002 ^2003 = 2002 ^2000 . 2002^3=(2002^4).^500 . 2002^3
=(...6).(...8)=..8
2003^2004=(2003^4)^501 = ...1
2002^2003 + 2003^2004=...1+...8 =..9 ko chia hết cho 2
b.3^4n -6 =(...1) - (..6) = ...5 chia hết cho 5
c.2001^2002-1=(...1).(..1) =...0 chia hết cho 10
nếu đúng nhớ tick cho mình nhé
bài 8
c) chứng minh \(\overline{aaa}⋮37\)
ta có: \(aaa=a\cdot111\)
\(=a\cdot37\cdot3⋮37\)
\(\Rightarrow aaa⋮37\)
k mk nha
k mk nha.
#mon
a) \(1+2+...+2^{2011}\)
\(=2^0+2+...+2^{2010}+2^{2011}\)
\(=2^0\left(1+2\right)+...+2^{2010}\left(1+2\right)\)
\(=2^0\cdot3+...+2^{2010}\cdot3\)
\(=3\left(2^0+...+2^{2010}\right)⋮3\left(đpcm\right)\)
Các câu còn lại tương tự, dài quá
a) Dãy trên có : 2012 lũy thừa và 2012 \(⋮\)2 =< có thể ghpes thành các nhóm, mỗi nhóm 2 lũy thừa.
Ta có :
A = ( 1 + 2 ) + ( 22 + 23 ) + ...+( 22010 + 22011 )
=> A = 3 + 22 . ( 1 + 2 ) +...+ 22010. ( 1 + 2 )
=> A = 3 . ( 1 + 22 +...+ 22010 ) => A chia hết cho 3
- Để chứng minh chia hết cho 5 thì ghép 4 cái liền. ( làm tương tự trên )
b,
Ta có :
B = 1 + 7 +...+ 7101
=> B = ( 1 + 72 ) + ( 7 + 73 ) +...+ ( 799 + 7101 )
=> B = 50 + 72.( 1 + 72 ) +...+ 799. ( 1 + 72 )
=> B = 50 + 72.50 +...+799.50
=> B = 50.( 1 + 72 +...+ 799 ) => B chia hết cho 50
Dưới tương tự...
thu vien cua trường có khoảng trên 2000 bản sach. nếu xếp 100 bản vào một tủ thì thừa 12 bản, nếu xếp 120 bản vào tủ thì thiếu 108 bản. nếu xếp 150 bản vào một tủ thì thiếu 138 bản. hỏi thu viện có bao nhiêu bản sách? ai giải hộ với
bài khó quá mà mk lại ngu toán ............. nên ko lm đc bài này ,xl cậu nhoa
a) Do: 2002 chia hết cho 2 và số tận cùng của lũy thừa có cơ số là 2002 là 2 ; 4 ; 8 ; 6 => 20022003 cũng chia hết cho 2 (1)
Do: 2003 không chia hết cho 2 và số tận cùng của lũy thừa cơ số 2003 là 3 ; 9; 7 ; 1=> 20032004 không chia hết cho 2 (2)
Từ (1) và (2) ta được: 20022003 + 20032004 không chia hết cho 2
b) 34n - 6 = (34)n - 6 = 81n - 6
Do: Lũy thừa có cơ số là 81 thì có tận cùng là 1 => 81n đồng dư với 1 (mod 5) đồng thời 6 đồng dư với 1 (mod 5)
=>81n - 6 đồng dư với 1 - 1(mod 5) <=> 81n - 6 đồng dư với 0 (mod 5)
=> 81n - 6 chia hết cho 5 => 34n - 6 chia hết cho 5
c) 20012002 có tận cùng là 1 => 20012002 đồng dư với 1 (mod 10)
=> 20012002 - 1 đồng dư với 1 - 1 (mod 10) => 20012002 - 1 đồng dư với 0 (mod 10)
=> 20012002 - 1 chia hết cho 10