Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^2+13+x^2=2^3\)
\(\Leftrightarrow38+x^2=8\)
\(\Leftrightarrow x^2=-30\)( loại vì x^2 luôn lớn hơn hoặc bằng 0)
Vậy ko có giá trị x nào thỏa mãn dề bài
52 + ( 13 + x2 ) = 32
25 + 13 + x2 =9
x2 = -29 (vô lí) (vì x2>=0 với mọi x )
=> ko có già trị x thỏa mãn
Ta thấy : \(\left(x-y^2+z\right)^2\ge0\forall x,y,z\)
\(\left(y-2\right)^2\ge0\forall y\)
\(\left(z+3\right)^2\ge0\forall z\)
Do đó : \(\left(x-y^2+z\right)^2+\left(y-2\right)^2+\left(z+3\right)^2\ge0\forall x,y,z\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-y^2+z\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x-y^2+z=0\\y-2=0\\z+3=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-2^2+\left(-3\right)=0\\y=2\\z=-3\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=7\\y=2\\z=-3\end{cases}}\)
Vậy : \(\left(x,y,z\right)=\left(7,2,-3\right)\)
ta có
|x-2| > 0
(x^2-2)^2014 > 0
=> để |x-2|+(x^2-2)^2014=0 thì
\(\hept{\begin{cases}x-2=0\\\left(x^2-2\right)=0\end{cases}}\)
=> \(\hept{\begin{cases}x=2\\x^2=2\end{cases}}\)
=>\(\hept{\begin{cases}x=2\\x=\sqrt{2}\end{cases}}\)
\(5^x+5^{x+2}=650;5^x.26=650;5^x=25;x=2\)
\(2^x+2^{x+3}=144;2^x.9=144;2^x=16;x=4\)
\(3^{x-1}+5.3^{x-1}=162;3^{x-1}.6=162;3^{x-1}=27;x=4\)
\(\left(x-5\right)^4=\left(x-5\right)^6\)
\(\rightarrow x-5=0\&x-5=1\) hoặc x - 5 = - 1
\(x-5=1;x=6;x-5=0;x=5;x-5=-1;x=4\)
\(\left(2^2:4\right).2^n=4;2^n=2^2;n=2\)
B1. 2x + 3 + 22 = 72
=> 2x + 3 + 4 = 72
=> 2x + 3 = 72 - 4
=> 2x + 3 = 68
=> ko có gtri x
B2 : Ta có : A = 1 + 2 + 22 + 23 + 24 + 25 + 26 + ... + 22001 + 22002
= (1 + 2) + (22 + 23 + 24) + (25 + 26 + 27) + ... + (22000 + 22001 + 22002)
= 3 + 22.(1 + 2 + 22) + 25.(1 + 2 + 22 ) + ... + 22000 . (1 + 2 + 22)
= 3 + 22.7 + 25.7 + ... + 22000 . 7
= 3 + (22 + 25 + .... + 22000) . 7
=> Số dư của 7 là 3
Nguyen Dinh An ns -1 tick tức là cậu ấy muốn bị trừ 1 điểm ấy mà
(x-2)2=(x-2)4
2=4
\(\left(x-2\right)^4-\left(x-2\right)^2=0\)
\(\left(x-2\right)^2.\left[\left(x-2\right)^2-1\right]=0\)
\(=>\orbr{\begin{cases}\left(x-2\right)^2=0\\\left(x-2\right)^2-1=0\end{cases}}\)
\(=>\orbr{\begin{cases}x=2\\x=3\end{cases}}\)