K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKx\(\ne\)2,x\(\ne\)0

\(=\)\(\frac{2(x+2)+2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\):\(\frac{4x}{\left(x+2\right)^2}\)

=\(\frac{2x+4+2x-4}{\left(x-2\right)\left(x+2\right)}\)\(\frac{(x+2)^2}{4x}\)

=\(\frac{x+2}{x-2}\)

28 tháng 12 2019

\(\left(\frac{2}{x-2}+\frac{2}{x+2}\right):\frac{4x}{x^2+4x+4}\)

\(=\left(\frac{2}{x-2}+\frac{2}{x+2}\right):\frac{4x}{\left(x+2\right)^2}\)

\(=\left(\frac{2}{x-2}+\frac{2}{x+2}\right).\frac{\left(x+2\right)^2}{4x}\)

\(=\frac{4x}{x^2-4}.\frac{\left(x+2\right)^2}{4x}\)

\(=\frac{4x.\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right).4}\)

\(=\frac{x+2}{x-2}\)

26 tháng 12 2019

\(\left(\frac{2}{x-2}-\frac{2}{x+2}\right).\frac{x^2+4x+4}{8}\)

\(=\frac{2x+4-2x+4}{x^2-4}.\frac{\left(x+2\right)^2}{8}\)

\(=\frac{8}{x^2-4}.\frac{\left(x+2\right)^2}{8}\)

\(=\frac{x+2}{x-2}\)

26 tháng 12 2019

Ta có:

\(\left(\frac{2}{x-2}-\frac{2}{x+2}\right).\frac{x^2+4x+4}{8}\)

\(=\left(\frac{2\left(x+2\right)}{\left(x-2\right).\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\right).\frac{x^2+4x+4}{8}\)

\(=\left(\frac{2x+4}{x^2-4}-\frac{2x-4}{x^2-4}\right).\frac{x^2+4x+4}{8}\)

\(=\frac{0}{x^2-4}.\frac{x^2+4x+4}{8}\)

\(=0.\frac{x^2+4x+4}{8}\)

\(=0\)

26 tháng 7 2017

Ta có \(\left(\frac{1}{x^2+4x+4}-\frac{1}{x^2-4x+4}\right):\left(\frac{1}{x+2}+\frac{1}{x-2}\right)\)

\(=\frac{\left(x-2\right)^2-\left(x+2\right)^2}{\left(x-2\right)^2\left(x+2\right)^2}:\frac{x-2+x+2}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{\left(x-2+x+2\right)\left(x-2-x-2\right)}{\left(x-2\right)^2\left(x+2\right)^2}:\frac{2x}{\left(x+2\right)\left(x-2\right)}\)

\(\frac{-4.2x}{\left(x+2\right)^2\left(x-2\right)^2}.\frac{\left(x+2\right)\left(x-2\right)}{2x}=\frac{-4}{\left(x+2\right)\left(x-2\right)}\)

20 tháng 2 2020

\(ĐKXĐ:x\ne\pm2\)

\(\left(\frac{2}{x+2}-\frac{4}{x^2+4x+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)

\(=\left[\frac{2}{x+2}-\frac{4}{\left(x+2\right)^2}\right]:\left[\frac{2}{\left(x-2\right)\left(x+2\right)}+\frac{-1}{x-2}\right]\)

\(=\left[\frac{2\left(x+2\right)}{\left(x+2\right)^2}-\frac{4}{\left(x+2\right)^2}\right]:\left[\frac{2}{\left(x-2\right)\left(x+2\right)}+\frac{-\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\right]\)

\(=\frac{2\left(x+2\right)-4}{\left(x+2\right)^2}:\frac{2-\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)\(=\frac{2x+4-4}{\left(x+2\right)^2}:\frac{2-x-2}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{2x}{\left(x+2\right)^2}:\frac{-x}{\left(x-2\right)\left(x+2\right)}=\frac{2x}{\left(x+2\right)^2}.\frac{-\left(x-2\right)\left(x+2\right)}{x}\)

\(=\frac{-2\left(x-2\right)}{x+2}\)

20 tháng 2 2020

\(\left(\frac{2}{x+2}-\frac{4}{x^2+4x+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)

\(\Leftrightarrow\left(\frac{2}{x+2}-\frac{4}{\left(x+2\right)^2}\right):\left(\frac{2}{\left(x-2\right)\left(x+2\right)}+\frac{1}{2-x}\right)\)

\(\Leftrightarrow\frac{2x+4-4}{\left(x+2\right)^2}:\frac{2+x+2}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow\frac{2x}{\left(x+2\right)^2}\cdot\frac{\left(x-2\right)\left(x+2\right)}{x+4}\)

\(\Leftrightarrow\frac{2x^2-4x}{\left(x+2\right)\left(x+4\right)}\)

6 tháng 11 2019

\(C1:=3+1-3y\)

\(=4-3y\)

\(C2:\)

\(a.=3x\left(2y-1\right)\)

\(b.=\left(x-y\right)\left(x+y\right)+4\left(x+y\right)\)

\(=\left(x-y+4\right)\left(x+y\right)\)

\(C3:\)

\(a.6x^2+2x+12x-6x^2=7\)

\(14x=7\)

\(x=\frac{1}{2}\)

\(b.\frac{1}{5}x-2x^2+2x^2+5x=-\frac{13}{2}\)

\(\frac{26}{5}x=-\frac{13}{2}\)

\(x=-\frac{13}{2}\times\frac{5}{26}\)

\(x=-\frac{5}{4}\)

3 tháng 7 2020

Bạn Moon làm kiểu gì vậy ?

1) \(\left(3x^2y^2+x^2y^2\right):\left(x^2y^2\right)-3y\)

\(=\left[\left(x^2y^2\right)\left(3+1\right)\right]:\left(x^2y^2\right)-3y\)

\(=4-3y\)

2) a, \(6xy-3x=\left(3x\right)\left(2y-1\right)\)

b, \(x^2-y^2+4x+4y=\left(x+y\right)\left(x-y\right)+4\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y+4\right)\)

3) a,  \(2x\left(3x+1\right)+\left(4-2x\right)3x=7\)

\(< =>6x^2+2x+12x-6x^2=7\)

\(< =>14x=7< =>x=\frac{7}{14}\)

b, \(\frac{1}{2}x\left(\frac{2}{5}-4x\right)+\left(2x+5\right)x=-6\frac{1}{2}\)

\(< =>\frac{x}{2}.\frac{2}{5}-\frac{x}{2}.4x+2x^2+5x=-\frac{13}{2}\)

\(< =>\frac{x}{5}-2x^2+2x^2+5x=-\frac{13}{2}\)

\(< =>\frac{26x}{5}=\frac{-13}{2}\)

\(< =>26x.2=\left(-13\right).5\)

\(< =>52x=-65< =>x=-\frac{65}{52}=-\frac{5}{4}\)

7 tháng 1 2020

\(a\frac{x^2-49}{x+5}:\left(x-7\right)\)

\(=\frac{\left(x-7\right)\left(x+7\right)}{x+5}.\frac{1}{\left(x-7\right)}\)

\(=\frac{x+7}{x+5}\)

\(b,\frac{2x+7}{x+2}-\frac{x+8}{2x+4}\)

\(=\frac{2\left(2x+7\right)}{2\left(x+2\right)}-\frac{x+8}{2\left(x+2\right)}=\frac{4x+14-x+8}{2\left(x+2\right)}\)

\(=\frac{3x+22}{2\left(x+2\right)}\)

7 tháng 1 2020

a) \(\frac{x^2-49}{x+5}\div\left(x-7\right)=\frac{\left(x-7\right)\left(x+7\right)}{x+5}.\frac{1}{x-7}=\frac{x+7}{x+5}\)

b) \(\frac{2x+7}{x+2}-\frac{x+8}{2x+4}=\frac{2\left(2x+7\right)}{2\left(x+2\right)}-\frac{x+8}{2\left(x+2\right)}=\frac{\left(4x+14\right)-\left(x+8\right)}{2\left(x+2\right)}\)

\(=\frac{4x+14-x-8}{2\left(x+2\right)}=\frac{3x+6}{2\left(x+2\right)}=\frac{3\left(x+2\right)}{2\left(x+2\right)}=\frac{3}{2}\)

15 tháng 7 2017

a) ĐKXĐ: \(x;y\ne0,x\ne\frac{y}{2},y\ne\frac{x}{2}\)
\(\frac{y}{2x^2-xy}+\frac{4x}{y^2-2xy}=\frac{y}{x\left(2x-y\right)}-\frac{4x}{y\left(2x-y\right)}\)\(=\frac{y^2-4x^2}{xy\left(2x-y\right)}=\frac{\left(y-2x\right)\left(y+2x\right)}{xy\left(2x-y\right)}\)
\(=\frac{-\left(y+2x\right)}{xy}\)

b) ĐKXĐ: \(x\ne2;x\ne-2\)
\(\frac{1}{x+2}+\frac{3}{x^2-4}+\frac{x-14}{\left(x^2+4x+4\right)\left(x-2\right)}\)\(=\frac{1}{x+2}+\frac{3}{\left(x-2\right)\left(x+2\right)}+\frac{x-14}{\left(x+2\right)^2\left(x-2\right)}\)
\(=\frac{\left(x-2\right)\left(x+2\right)+3\left(x+2\right)+x-14}{\left(x+2\right)^2\left(x-2\right)}\)\(=\frac{x^2-4+3x+6+x-14}{\left(x+2\right)^2\left(x-2\right)}\)\(=\frac{x^2+4x-12}{\left(x+2\right)^2\left(x-2\right)}=\frac{\left(x^2+4x+4\right)-16}{\left(x+2\right)^2\left(x-2\right)}\)\(=\frac{\left(x+2\right)^2-16}{\left(x+2\right)^2\left(x-2\right)}=\frac{\left(x+2-4\right)\left(x+2+4\right)}{\left(x+2\right)^2\left(x-2\right)}\)\(=\frac{\left(x-2\right)\left(x+6\right)}{\left(x+2\right)^2\left(x-2\right)}=\frac{x+6}{\left(x+2\right)^2}\)