\(x^4+ax+b\) 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2019

\(Gọi \)  \(f ( x ) = x^4 + ax + b\)

          \(g( x ) = x^2 - 4\)

\(Cho \)  \(g ( x ) = 0\)

\(\Leftrightarrow\)\(x^2 - 4 = 0\)

\(\Leftrightarrow\)\(( x - 2 )( x + 2 )=0\)

\(\Rightarrow\)\(x = 2 \)  \(hoặc\)  \(x = - 2\)

\(Ta \) \(có : \)

\(f ( 2 ) = 2^4 + a . 2 + b\)

\(\Rightarrow\)\(f ( 2 ) = 16 + 2a + b\)  \(( 1 )\)

\(f ( - 2 ) = ( - 2 )^4 + a . ( - 2 ) + b\)

\(\Rightarrow\)\(f ( - 2 ) = 16 - 2a + b \)   \(( 2 )\)

\(Lấy \) \(( 1 ) + ( 2 )\)  \(ta \)  \(được : \)\(32 + 2b = 0\)

\(\Rightarrow\)\(2b = - 32\)

\(\Rightarrow\)\(b = - 16\)

\(Thay \)  \(b = - 16 \)  \(vào \)  \(( 1 ) \)  \(ta \)  \(được :\)

\(16 + 2a -16 = 0\)

\(\Rightarrow\)\(2a = 0\)

\(\Rightarrow\)\(a = 0\)

\(Vậy : a = 0 \)  \(và\)  \(b = - 16 \)  \(thì \)  \(x^4 + ax + b \)

\(⋮\)\(x ^2 -4\)

17 tháng 12 2019

Đa thức \(x^2-4\)có nghiệm\(\Leftrightarrow x^2-4=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=2\end{cases}}\)

Để \(x^4+ax+b⋮x^2-4\)thì

\(f\left(2\right)=f\left(-2\right)=0\)(theo Bezout)

Ta có: \(f\left(2\right)=2^4+2a+b=0\Leftrightarrow2a+b=-16\)(1)

\(f\left(-2\right)=\left(-2\right)^4-2a+b=0\Leftrightarrow-2a+b=-16\)(2)

Lấy (1) + (2), ta được: 2b =- 32\(\Rightarrow b=-16\)

Lúc đó \(a=\frac{-16+16}{2}=0\)

Vậy a = 0; b = -16

10 tháng 8 2019

\(1.\)

\(a,\left(a+b\right)^2=a^2+2ab+b^2\)

\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2\)

\(\Rightarrow\left(a+b\right)^2=\left(a-b\right)^2+4ab\left(đpcm\right)\)

10 tháng 8 2019

a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)(luôn dương)

b) \(x^2-x+\frac{1}{2}=x^2-x+\frac{1}{4}+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2+\frac{1}{4}>0\)(luôn dương)

.......................

11 tháng 2 2020

Đề sai ! Sửa nhé :

a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne\pm2\end{cases}}\)

\(A=\left(\frac{2}{x+2}-\frac{4}{x^2+4x+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)

\(\Leftrightarrow A=\left(\frac{2}{x+2}-\frac{4}{\left(x+2\right)^2}\right):\left(\frac{2}{\left(x-2\right)\left(x+2\right)}-\frac{1}{x-2}\right)\)

\(\Leftrightarrow A=\frac{2\left(x+2\right)-4}{\left(x+2\right)^2}:\frac{2-\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow A=\frac{2x+4-4}{\left(x+2\right)^2}.\frac{\left(x+2\right)\left(x-2\right)}{-x}\)

\(\Leftrightarrow A=\frac{2x\left(x-2\right)}{-x\left(x+2\right)}\)

\(\Leftrightarrow A=-\frac{2\left(x-2\right)}{x+2}\)

b) Để \(A\le-2\)

\(\Leftrightarrow-\frac{2\left(x-2\right)}{x+2}\le-2\)

\(\Leftrightarrow\frac{2\left(x-2\right)}{x+2}\ge2\)

\(\Leftrightarrow\frac{x-2}{x+2}\ge1\)

\(\Leftrightarrow x-2\ge x+2\)

\(\Leftrightarrow-2\ge2\)(ktm)

Vậy để \(A\le-2\Leftrightarrow x\in\varnothing\)

11 tháng 2 2020

a.

\(A=\left(\frac{2}{x+2}-\frac{4}{x^2+4+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)

\(A=\left(\frac{2.\left(x^2+8\right)}{\left(x+2\right).\left(x^2+8\right)}-\frac{4\left(x+2\right)}{\left(x+2\right)\left(x^2+8\right)}\right):\left(\frac{2}{\left(x-2\right)\left(x+2\right)}+\frac{1}{2-x}\right)\)

\(A=\left(\frac{2x^2+8-4x+8}{\left(x+2\right)\left(x^2+8\right)}\right):\left(\frac{2}{\left(x-2\right)\left(x+2\right)}+\frac{-1}{x-2}\right)\)

\(A=\left(\frac{2x\left(x-2\right)+16}{\left(x+2\right)\left(x^2+8\right)}\right):\left(\frac{2}{\left(x-2\right)\left(x+2\right)}+\frac{-x-2}{\left(x-2\right)\left(x+2\right)}\right)\)

\(A=\left(\frac{2x\left(x-2\right)+16}{\left(x+2\right)\left(x^2+8\right)}\right):\left(\frac{2-x-2}{\left(x-2\right)\left(x+2\right)}\right)\)

\(A=\left(\frac{\left(2x\left(x-2\right)+16\right)\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x^2+8\right)\left(-x\right)}\right)\)

\(A=\frac{\left(2x\left(x-2\right)+16\right)\left(x-2\right)}{\left(x^2+8\right)\left(-x\right)}\)

\(A=\frac{\left(2x^2-4x+16\right)\left(x-2\right)}{\left(x^2+8\right)\left(-x\right)}\)

\(A=\frac{\left(2x^3-4x-4x-4x^2+8x+16x-32\right)}{-x^3+8}\)

\(A=\frac{2x^3-4x^2+16x-32}{-x^3+8}\)

\(a,x^3-x^2-12x+45=0\)

\(\left(x-3\right)\left(x-3\right)\left(x+5\right)=0\)

\(x=3;3;-5\)

\(b,2x^3-5x^2+8x-5=0\)

\(\left(2x^2-3x+5\right)\left(x-1\right)=0\)

\(x=1\)

lm 1 câu đã chán ngắt , giải mấy câu nữa não tớ nổ bùmmm , tớ bt đây là trang web để hc nhưng tạo nên tiếng cười là chính nha ^^ 

21 tháng 7 2019

\(\text{a)}x^3-6x^2+12x-8\)

\(=x^3-2x^2-4x^2+8x+4x-8\)

\(=\left(x^3-2x^2\right)-\left(4x^2-8x\right)+\left(4x-8\right)\)

\(=x^2\left(x-2\right)+4x\left(x-2\right)+4\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+4x+4\right)\)

\(=\left(x-2\right)\left(x+2\right)^2\)

21 tháng 7 2019

\(\text{b)}8x^2+12x^2y+6xy^2+y^3=\left(2x+y\right)^3\)

Bài 2:

\(\text{a) }x^7+1=\left(x^{\frac{7}{3}}\right)^3+1^3=\left(x^{\frac{7}{3}}+1\right)\left[\left(x^{\frac{7}{3}}\right)^2-x^{\frac{7}{3}}+1\right]=\left(x^{\frac{7}{3}}+1\right)\left(x^{\frac{14}{3}}-x^{\frac{7}{3}}+1\right)\)

\(\text{b) }x^{10}-1=\left(x^5\right)^2-1^2=\left(x^5-1\right)\left(x^5+1\right)\)

Bài 3:

\(\text{a) }69^2-31^2=\left(69-31\right)\left(69+31\right)=38.100=3800\)

\(\text{b) }1023^2-23^2=\left(1023-23\right)\left(1023+23\right)=1000.1046=1046000\)

12 tháng 3 2020

Đề thiếu x nguyên nhé bạn :)

\(x^2+10x+10=\left(x^2+10x+25\right)-15\)

Đặt \(x^2+10x+10=a^2\left(a\in Z\right)\)

Khi đó:\(\left(x+5\right)^2-a^2=15\)

\(\Leftrightarrow\left(x+5-a\right)\left(x+5+a\right)=15\)

Đến đây bạn lập ước ra ngay nhé ! Có điều hơi mệt tí,hihi !

sai rồi bạn. phải là \(a^2-\left(x+5\right)^2\)chứ

28 tháng 10 2020

Bài 2:

a) \(x^2-y^2+3x-3y=\left(x^2-y^2\right)+\left(3x-3y\right)\)

\(=\left(x-y\right)\left(x+y\right)+3\left(x-y\right)=\left(x-y\right)\left(x+y+3\right)\)

b) \(5x-5y+x^2-2xy+y^2=\left(5x-5y\right)+\left(x^2-2xy+y^2\right)\)

\(=5\left(x-y\right)+\left(x-y\right)^2=\left(x-y\right)\left(x-y+5\right)\)

c) \(x^2-5x+4=x^2-x-4x+4=\left(x^2-x\right)-\left(4x-4\right)\)

\(=x\left(x-1\right)-4\left(x-1\right)=\left(x-1\right)\left(x-4\right)\)