Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 4 : a. 2002 ^2003 = 2002 ^2000 . 2002^3=(2002^4).^500 . 2002^3
=(...6).(...8)=..8
2003^2004=(2003^4)^501 = ...1
2002^2003 + 2003^2004=...1+...8 =..9 ko chia hết cho 2
b.3^4n -6 =(...1) - (..6) = ...5 chia hết cho 5
c.2001^2002-1=(...1).(..1) =...0 chia hết cho 10
nếu đúng nhớ tick cho mình nhé
bài 8
c) chứng minh \(\overline{aaa}⋮37\)
ta có: \(aaa=a\cdot111\)
\(=a\cdot37\cdot3⋮37\)
\(\Rightarrow aaa⋮37\)
k mk nha
k mk nha.
#mon
A=3 + 32 + 33 + .....+3100
=(3+32)+(33+34)+....+(399+3100)
=3.(1+3)+33.(1+3)+...+399.(1+3)
=3.4+33.4+...+399.4
=4.(3+33+...+399) chia hết cho 4
Vậy A chia hết cho 9
1, B=3+32+33+...+390
=(3+32+33)+(34+35+36)+...+(388+389+390)
=3.(1+3+32)+34.(1+3+32)+...+388.(1+3+32)
=3.(1+3+9)+34.(1+3+9)+...+388.(1+3+9)
=3.13+34.13+388.13
=13.(3+34+388)
Vậy tổng B=3+32+33+...+390 \(⋮\)13
Bài 1 : \(B=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+....+\left(3^{88}+3^{89}+3^{90}\right)\)
\(B=\left(3+3^2+3^3\right)+3^3\left(3+3^2+3^3\right)+...+3^{87}\left(3+3^2+3^3\right)\)
\(B=1.39+3^3.39+...+3^{87}.39\)
\(B=39\left(1+3^3+...+3^{87}\right)\)
\(B=13.3.\left(1+3^3+...+3^{87}\right)⋮13\)
Bài 2:
\(A=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{195}+2^{196}+2^{197}\right)\)
\(A=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{195}\left(1+2+2^2\right)\)
\(A=7+2^3.7+...+2^{195}.7\)
\(A=7\left(1+2^3+...+2^{195}\right)⋮7\)
Vậy số dư khi chia cho 7 là 0
(Mình không chắc đúng,nếu sai thì bạn thông cảm nhé )
Chúc bạn học tốt
AI MÀ GIẢI!
CHỈ CÁI ĐỀ THÔI MÀ CŨNG ĐỦ RỐI RỒI!!!!!!!!!!!!!!!!!!
b1: 3 số TNLT là n, n+1, n+2
tổng 3 số TNLT là: n+ n+1 + n +2=( n + n+ n)+(1+2)=3n+3=3.(n+1) chia hết cho 3 (đpcm)
phần b làm như trên nhé