Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{y}=\frac{3}{5}\Rightarrow\frac{x}{3}=\frac{y}{5}\) ; \(\frac{y}{z}=\frac{4}{3}\Rightarrow\frac{y}{4}=\frac{z}{3}\)
ta có :
\(\frac{x}{3}=\frac{y}{5}\)
\(\frac{y}{4}=\frac{z}{3}\)
\(\Rightarrow\frac{x}{12}=\frac{y}{20}=\frac{z}{15}\)
áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{x}{12}=\frac{y}{20}=\frac{z}{15}=\frac{4x}{48}=\frac{2z}{30}=\frac{4x-y+2z}{48-20+30}=\frac{116}{58}=2\)
\(\frac{x}{12}=3\Rightarrow x=36\)
\(\frac{y}{20}=2\Rightarrow y=40\)
\(\frac{z}{15}=2\Rightarrow z=30\)
\(A=3x^3-6x^2+2\left|x\right|+7\) với \(x=-\frac{1}{3}\)
Thay \(x=-\frac{1}{3}\) vào A, ta có:
\(A=3.\left(-\frac{1}{3}\right)^3-6.\left(-\frac{1}{3}\right)^2+2.\left|-\frac{1}{3}\right|+7\)
\(A=\left(-\frac{1}{9}\right)-\frac{2}{3}+\frac{2}{3}+7\)
\(A=\frac{62}{9}\)
\(B=4\left|x\right|-2\left|y\right|\) với \(x=\frac{1}{4};y=-2\)
\(B=4.\left|\frac{1}{4}\right|-2.\left|-2\right|\)
\(B=1-4\)
\(B=-3\)
a) \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
=> \(\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)
=> \(\frac{5}{x}=\frac{1-2y}{8}\)
=> 5.8 = x(1 - 2y)
=> x(1 - 2y) = 40
=> x; (1 - 2y) \(\in\)Ư(40) = {1; -1; 2; -2; 4; -4; 5; -5; 8; -8; 10; -10; 20; -20; 40; -40}
Vì 1 - 2y là số lẽ => 1 - 2y \(\in\){1; -1; 5; -5}
Lập bảng :
1 - 2y | 1 | -1 | 5 | -5 |
x | 40 | -40 | 8 | -8 |
y | 0 | 1 | -2 | 3 |
Vậy ....
\(A^2=\frac{x+1}{x-3}=1+\frac{4}{x-3}\).
Để A nguyên thì A2 nguyên tức là \(\frac{4}{x-3}\) nguyên
Nên \(x-3\inƯ\left(4\right)=\left\{\pm1;\pm4\right\}\)
\(\Rightarrow x\in\left\{-1;2;4;7\right\}\)
Thay lần lượt các giá trị x vào xem với giá trị nào của x thì A2 là số chính phương là xong!
a) Ta có:
\(\frac{x}{4}=\frac{y}{5}\)và \(x+y=18\)
AĐTCCDTSBN(Áp dụng tính chất của dãy tỉ số bằng nhau)
\(\frac{x}{4}=\frac{y}{5}=\frac{x+y}{4+5}=\frac{18}{9}=2\)
\(\frac{x}{4}=2\Rightarrow x=2.4=8\)
\(\frac{y}{5}=2\Rightarrow y=2.5=10\)
Bài kia tương tự
a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{5}=\frac{x+y}{4+5}=\frac{18}{9}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{4}=2\\\frac{y}{5}=2\end{cases}\Rightarrow\hept{\begin{cases}x=8\\y=10\end{cases}}}\)
Vậy x = 8; y = 10
b) Ta có :
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{12}=\frac{x+y+z}{8+12+18}=\frac{20}{38}=\frac{10}{19}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{8}=\frac{10}{19}\\\frac{y}{12}=\frac{10}{19}\\\frac{z}{18}=\frac{10}{19}\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{80}{19}\\y=\frac{120}{19}\\z=\frac{180}{19}\end{cases}}}\)
Vậy \(x=\frac{80}{19};y=\frac{120}{19};z=\frac{180}{19}\)
Vì \(\left|2x+1\right|\ge0;\left|x+y-\frac{1}{2}\right|\ge0\)
Mà \(\left|2x+1\right|+\left|x+y-\frac{1}{2}\right|\le0\Rightarrow\orbr{\begin{cases}2x+1=0\\x+y-\frac{1}{2}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\y=\frac{1}{4}\end{cases}}\)(1)
Thế (1) vào A
\(\Rightarrow A=4.\left(-\frac{1}{2}\right)^3.\left(\frac{1}{4}\right)^2-\frac{1}{4}.\left(-\frac{1}{2}\right)+2.\frac{1}{4}-5\)
\(\Rightarrow A=-\frac{1}{2}+\frac{1}{8}+\frac{1}{2}-5\)
\(\Leftrightarrow A=\frac{1}{8}-5=\frac{1}{8}-\frac{40}{8}=-\frac{39}{8}\)
Ta có : \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
=> \(\frac{y+z}{x}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)
=> \(\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y}{z}=\frac{y+z+x+z+x+y}{x+y+z}=2\)
+) \(\frac{y+z}{x}=2\)
=> y+z=2x
+) \(\frac{x+z}{y}=2\)
=>x+z=2y
+)\(\frac{x+y}{z}=2\)
=> x+y=2z
Mà B= ( 1+x/y)(1+y/z) (1+z/x)
B= \(\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}\)
B= \(\frac{2z.2x.2y}{xyz}\)
B= 8
~ Chúc bạn học tốt ~
Tích và kết bạn với mình nha!
Ta có: \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)
Lại có:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(\Leftrightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)
\(\Leftrightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
(+) Xét x + y + z = 0\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\z+x=-y\end{cases}}\)
Thay vào ta có: \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=\frac{-xyz}{xyz}=-1\)
(+) Xét x + y + z \(\ne\) 0
Tương tự như trên ta có: \(\hept{\begin{cases}x+y=2z\\y+z=2x\\z+x=2y\end{cases}}\)
Thay vào ta có: \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)
Vậy \(\hept{\begin{cases}B=-1\Leftrightarrow x+y+z=0\\B=8\Leftrightarrow x+y=y+z=z+x\Leftrightarrow x=y=z\end{cases}}\)
Lời giải
Không mất tính tổng quát,giả sử \(x\ge y\)
Suy ra \(\frac{1}{5}=\frac{1}{x}+\frac{1}{y}\le\frac{1}{y}+\frac{1}{y}=\frac{2}{y}\)
Suy ra \(1\le y\le10\)..Thay vào từng giá trị của y là ok! (Chú ý đk x,y nguyên)
Cách khác:(đưa về pt ước số)
Quy đồng lên,ta có: \(\frac{x+y}{xy}=\frac{1}{5}\Rightarrow5\left(x+y\right)=xy\)
\(\Rightarrow xy-5x-5y=0\)
\(\Leftrightarrow xy-5x-5y+5=5\) (thêm 5 vào mỗi vế)
\(\Leftrightarrow\left(x-5\right)\left(y-5\right)=5\)
Lập bảng xét ước=) cái này quá quen thuộc rồi=)