K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2019

Ta có:  x/2 = y/5

            y/5 = z/7

=> x/2 = y/5 = z/7

Áp dụng t/c của dãy tỉ số bằng nhau, ta có :

  \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=\frac{x+y+z}{2+5+7}=\frac{92}{14}=\frac{46}{7}\)

=> x/2 = 46/7 => x = 46/7 . 2 = 92/7

    y/5 = 46/7 => y = 46/7 . 5 = 230/7

    z/7 = 46/7 => y = 46/7 . 7 = 46

Vậy ...

10 tháng 10 2019

\(\frac{x}{y}=\frac{3}{5}\Rightarrow\frac{x}{3}=\frac{y}{5}\) ; \(\frac{y}{z}=\frac{4}{3}\Rightarrow\frac{y}{4}=\frac{z}{3}\)

ta có :

\(\frac{x}{3}=\frac{y}{5}\)

\(\frac{y}{4}=\frac{z}{3}\)

\(\Rightarrow\frac{x}{12}=\frac{y}{20}=\frac{z}{15}\)

áp dụng tính chất dãy tỉ số bằng nhau, ta có :

\(\frac{x}{12}=\frac{y}{20}=\frac{z}{15}=\frac{4x}{48}=\frac{2z}{30}=\frac{4x-y+2z}{48-20+30}=\frac{116}{58}=2\)

\(\frac{x}{12}=3\Rightarrow x=36\)

\(\frac{y}{20}=2\Rightarrow y=40\)

\(\frac{z}{15}=2\Rightarrow z=30\)

22 tháng 10 2018

a) Ta có:

\(\frac{x}{4}=\frac{y}{5}\)và \(x+y=18\)

AĐTCCDTSBN(Áp dụng tính chất của dãy tỉ số bằng nhau)

\(\frac{x}{4}=\frac{y}{5}=\frac{x+y}{4+5}=\frac{18}{9}=2\)

\(\frac{x}{4}=2\Rightarrow x=2.4=8\)

\(\frac{y}{5}=2\Rightarrow y=2.5=10\)

Bài kia tương tự

22 tháng 10 2018

a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{4}=\frac{y}{5}=\frac{x+y}{4+5}=\frac{18}{9}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{4}=2\\\frac{y}{5}=2\end{cases}\Rightarrow\hept{\begin{cases}x=8\\y=10\end{cases}}}\)

Vậy x = 8; y = 10

b) Ta có : 

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{12}=\frac{x+y+z}{8+12+18}=\frac{20}{38}=\frac{10}{19}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{8}=\frac{10}{19}\\\frac{y}{12}=\frac{10}{19}\\\frac{z}{18}=\frac{10}{19}\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{80}{19}\\y=\frac{120}{19}\\z=\frac{180}{19}\end{cases}}}\)

Vậy \(x=\frac{80}{19};y=\frac{120}{19};z=\frac{180}{19}\)

28 tháng 7 2018

ta có:\(\frac{7}{2x+2}=\frac{3}{2y-4}\)=\(\frac{5}{z+4}\)=\(\frac{7+3}{2x+2+2y-4}=\frac{10}{2x+2y+2-4}=\frac{10}{2\left(x+y\right)-2}=\frac{5}{x+y-1}\)\(=\frac{5+5}{x+y+z-1+4}\)=\(\frac{10}{17-1+4}=\frac{10}{20}\)=\(\frac{1}{2}\)

từ đó bn tính ra nha

28 tháng 7 2018

thank you !

11 tháng 2 2019

a) \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) (1)

     \(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\) (2)

Từ (1);(2) suy ra: \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Theo đề: \(\left|x-2y\right|=5\)

\(\Rightarrow x-2y=5\) (nếu \(x-2y\ge0\Leftrightarrow x\ge2y\) )

    \(x-2y=-5\) (nếu \(x< 2y\) )

Vậy có hai trường hợp

TH1: Nếu \(x\ge2y\) suy ra: \(\frac{x}{15}=\frac{y}{10}\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{x-2y}{15-20}=\frac{5}{-5}=-1\)

\(\Rightarrow\hept{\begin{cases}x=15.\left(-1\right)=-15\\y=10.\left(-1\right)=-10\\z=6.\left(-1\right)=-6\end{cases}}\) (nhận)

TH2: Nếu x < 2y suy ra: \(\frac{x}{15}=\frac{y}{10}\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{x-2y}{15-20}=\frac{-5}{-5}=1\)

\(\Rightarrow\hept{\begin{cases}x=15.1=15\\y=10.1=10\\z=6.1=6\end{cases}}\) (nhận)

b) \(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\) (1)

    \(2x=3z\Rightarrow\frac{x}{3}=\frac{z}{2}\) (2)

Từ (1);(2) => \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)

Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k\)

\(\Rightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}\Rightarrow xy=6k.15k=90k^2=90\Rightarrow k^2=1\Rightarrow k=\left\{-1;1\right\}}\)

\(\Rightarrow\hept{\begin{cases}x=6.1=6\\y=15.1=15\\z=10.1=10\end{cases}}\) hoặc \(\hept{\begin{cases}x=6.\left(-1\right)=-6\\y=15.\left(-1\right)=-15\\z=10.\left(-1\right)=-10\end{cases}}\)

11 tháng 2 2019

c) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)

\(\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)

\(\frac{2x+2y+2z}{x+y+z}\)

\(\frac{2\left(x+y+z\right)}{x+y+z}=2\)

=> \(\frac{1}{x+y+z}=2\) => x + y + z = 1/2

=> \(\frac{y+z+1}{x}=2\) => y + z + 1 = 2x 

                                       => y + z + x + 1 = 3x

                                       => 1/2 + 1 = 3x

                                      => 3/2 = 3x

                                      => x = 3/2 : 3 = 1/2

=> \(\frac{x+z+2}{y}=2\) => x + z + 2 = 2y

                                        => x + z + y + 2 = 3y

                                        => 1/2 + 2 = 3y

                                       => 5/2 = 3y

                                       => y = 5/2 : 3 = 5/6

=> \(\frac{x+y-3}{z}=2\)=> x + y - 3 = 2z

                                         => x + y + z - 3 = 3z

                                          => 1/2 - 3 = 3z

                                        => 3z = -5/2

                                         => z = -5/2 : 3 = -5/6

Vậy ...

21 tháng 3 2019

a)\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2010}=0\)

\(\Leftrightarrow\left(3x-5\right)^{2006}=0\Leftrightarrow3x-5=0\Leftrightarrow x=\frac{5}{3}\)

hay\(\left(y^2-1\right)^{2008}=0\Leftrightarrow y^2-1=0\Leftrightarrow y^2=1\Leftrightarrow y=\pm1\)

hay\(\left(x-z\right)^{2010}=0\Leftrightarrow x-z=0\Leftrightarrow\frac{5}{3}-z=0\Leftrightarrow z=\frac{5}{3}\)

V...\(x=\frac{5}{3},y=\pm1,z=\frac{5}{3}\)

b)Ta co:\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{x^2+y^2+z^2}{4+9+16}=\frac{116}{29}=4\)

Suy ra:\(\frac{x}{2}=4\Leftrightarrow x=8\)

            \(\frac{y}{3}=4\Leftrightarrow y=12\)

             \(\frac{z}{4}=4\Leftrightarrow z=16\)

V...

29 tháng 10 2019

Ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)

\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}\)

\(\Rightarrow\frac{x^2}{4}=\frac{3y^2}{27}=\frac{z^2}{25}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{4}=\frac{3y^2}{27}=\frac{z^2}{25}=\frac{x^2+3y^2-z^2}{4+27-25}=\frac{30}{6}=5\)

\(\Rightarrow\)x2=20

         y2=45

         z2=125

29 tháng 10 2019

Áp dụng .......................................

ta được: x/2=y/3=z/5=(x2+3y2-z2)/(22+3*32-52)=30/6=5

Vậy: x=10 

    y=15

    z=25

31 tháng 7 2020

Sử dụng tính chất của dãy tỉ số bằng nhau thì :

\(\frac{x+1}{2}=\frac{y-1}{3}=\frac{z+2}{4}=\frac{x+1+y-1+z+2}{2+3+4}=\frac{x+y+z+2}{9}\)

Do \(\frac{x+1}{2}=\frac{y-1}{3}=\frac{z+2}{4}=\frac{x+y+z+2}{2x+5}\)

Suy ra \(\frac{x+y+z+2}{9}=\frac{x+y+z+2}{2x+5}< =>2x+5=9\)

\(< =>2x=4< =>x=\frac{4}{2}=2\)

Thế vào thì ta được : \(\hept{\begin{cases}\frac{x+1}{2}=\frac{y-1}{3}< =>\frac{3}{2}=\frac{y-1}{3}\\\frac{x+1}{2}=\frac{z+2}{4}< =>\frac{3}{2}=\frac{z+2}{4}\end{cases}}\)

\(< =>\hept{\begin{cases}2\left(y-1\right)=9\\2\left(z+2\right)=12\end{cases}< =>\hept{\begin{cases}2y-2=9\\2z+4=12\end{cases}}}\)

\(< =>\hept{\begin{cases}2y=11< =>y=\frac{11}{2}\\2z=8< =>z=\frac{8}{2}=4\end{cases}}\)

Vậy ta có bộ số x,y,z thỏa mãn đẳng thức sau : \(\left\{2;\frac{11}{2};4\right\}\)

31 tháng 7 2020

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\frac{x+1}{2}=\frac{y-1}{3}=\frac{z+2}{4}=\frac{x+y+z}{2x+5}\frac{x+1+y-1+z+2}{2+3+4}=\frac{x+y+z+2}{9}=\frac{x+y+z}{9}\)(1)

Từ (1) => \(\frac{x+y+z}{2x+5}=\frac{x+y+z}{9}\)

=> 2x + 5 = 9

=> 2x = 4

=> x = 2

Thay x vào (1)

=> \(\frac{2+1}{2}=\frac{y-1}{3}=\frac{z+2}{4}\)

=> \(\frac{y-1}{3}=\frac{z+2}{4}=\frac{3}{2}\)

=> \(\hept{\begin{cases}\frac{y-1}{3}=\frac{3}{2}\\\frac{z+2}{4}=\frac{3}{2}\end{cases}}\Rightarrow\hept{\begin{cases}y=\frac{3}{2}.3+1\\z=\frac{3}{2}.4-2\end{cases}}\Rightarrow\hept{\begin{cases}y=\frac{11}{2}\\z=4\end{cases}}\)

Vậy x = 2 ; y = 11/2 ; z = 4