K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
1 tháng 8 2021

a) \(\frac{1-x}{x+4}=\frac{5-4-x}{x+4}=\frac{5}{x+4}-1\inℤ\Leftrightarrow\frac{5}{x+4}\inℤ\)

mà \(x\inℤ\Rightarrow x+4\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\)

\(\Leftrightarrow x\in\left\{-9,-5,-3,1\right\}\)

b) \(\frac{11-2x}{x-5}=\frac{1+10-2x}{x-5}=\frac{1}{x-5}-2\inℤ\Leftrightarrow\frac{1}{x-5}\inℤ\)

mà \(x\inℤ\Rightarrow x-5\inƯ\left(1\right)=\left\{-1,1\right\}\Leftrightarrow x\in\left\{4,6\right\}\)

c) \(\frac{x+1}{2x+1}\inℤ\Rightarrow\frac{2\left(x+1\right)}{2x+1}=\frac{2x+1+1}{2x+1}=1+\frac{1}{2x+1}\inℤ\Leftrightarrow\frac{1}{2x+1}\inℤ\)

mà \(x\inℤ\Rightarrow2x+1\inƯ\left(1\right)=\left\{-1,1\right\}\Leftrightarrow x\in\left\{-1,0\right\}\).

Thử lại đều thỏa mãn. 

15 tháng 9 2020

a) Để \(\frac{6}{2a+1}\inℤ\)thì \(6⋮2a+1\)

\(\Rightarrow2a+1\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

Vì \(a\inℤ\)\(\Rightarrow2a+1\)là số lẻ 

\(\Rightarrow\)\(2a+1\)là ước lẻ của 6

\(\Rightarrow2a+1\in\left\{-3;-1;1;3\right\}\)

\(\Rightarrow2a\in\left\{-4;-2;0;2\right\}\)

\(\Rightarrow a\in\left\{-2;-1;0;1\right\}\)

Vậy \(a\in\left\{-2;-1;0;1\right\}\)

b) Để \(\frac{4a-3}{5a-1}\inℤ\)thì \(4a-3⋮5a-1\)\(\Rightarrow5.\left(4a-3\right)⋮5a-1\)

Ta có: \(5\left(4a-3\right)=20a-15=20a-4-11=4\left(5a-1\right)-11\)

Vì \(4.\left(5a-1\right)⋮5a-1\)\(\Rightarrow\)Để \(4a-3⋮5a-1\)thì \(11⋮5a-1\)

\(\Rightarrow5a-1\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)

\(\Leftrightarrow5a\in\left\{-10;0;2;12\right\}\)\(\Leftrightarrow a\in\left\{-2;0;\frac{2}{5};\frac{12}{5}\right\}\)

mà \(a\inℤ\)\(\Rightarrow a\in\left\{-2;0\right\}\)

Vậy \(a\in\left\{-2;0\right\}\)

c) \(\frac{a^2+3}{a-1}=\frac{a^2-1+4}{a-1}=\frac{\left(a-1\right)\left(a+1\right)+4}{a-1}=\left(a+1\right)+\frac{4}{a-1}\)

Vì \(a\inℤ\)\(\Rightarrow a+1\inℤ\)

\(\Rightarrow\)Để \(\frac{a^2+3}{a-1}\inℤ\)thì \(\frac{4}{a-1}\inℤ\)

\(\Rightarrow4⋮a-1\)\(\Rightarrow a-1\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)

\(\Rightarrow a\in\left\{-3;-1;0;2;3;5\right\}\)

Vậy \(a\in\left\{-3;-1;0;2;3;5\right\}\)

\(\frac{a^2-3a-5}{a-2}\left(1\right)=\frac{a\left(a-2\right)-\left(a+5\right)}{a-2}\)

\(=a-\frac{a+5}{a-2}=a-\frac{a-2+7}{a-2}\)

\(=a-1+\frac{7}{a+2}\)

để (1) thuộc Z thì 7 phải chia hết cho a+2 

\(\Rightarrow a+2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\) 

=> a={-1;-3;5;-9}

15 tháng 9 2020

Ta có \(\frac{a^2-3a-5}{a-2}=\frac{a^2-2a-a+2-7}{a-2}=\frac{a\left(a-2\right)-\left(a-2\right)-7}{a-2}=\frac{\left(a-2\right)\left(a-1\right)-7}{a-2}\)

\(=a-1-\frac{7}{a-2}\)

Vì \(\hept{\begin{cases}a\inℤ\\-1\inℤ\end{cases}}\Rightarrow\frac{-7}{a-2}\inℤ\Rightarrow-7⋮a-2\Rightarrow a-2\inƯ\left(-7\right)\)

=> \(a-2\in\left\{1;7;-1;-7\right\}\)

=> \(a\in\left\{3;9;1;-5\right\}\)

Vậy  \(a\in\left\{3;9;1;-5\right\}\)l là giá trị cần tìm

27 tháng 2 2019

a) \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)

=> \(\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)

=> \(\frac{5}{x}=\frac{1-2y}{8}\)

=> 5.8 = x(1 - 2y)

=> x(1 - 2y) = 40

=> x; (1 - 2y) \(\in\)Ư(40) = {1; -1; 2; -2; 4; -4; 5; -5; 8; -8; 10; -10; 20; -20; 40; -40}

Vì 1 - 2y là số lẽ => 1 - 2y \(\in\){1; -1; 5; -5}

Lập bảng :

  1 - 2y  1  -1   5   -5
     x  40  -40  8  -8
    y  0  1  -2  3

Vậy ....

27 tháng 2 2019

\(A^2=\frac{x+1}{x-3}=1+\frac{4}{x-3}\).

Để A nguyên thì A2 nguyên tức là \(\frac{4}{x-3}\) nguyên 

Nên \(x-3\inƯ\left(4\right)=\left\{\pm1;\pm4\right\}\)

\(\Rightarrow x\in\left\{-1;2;4;7\right\}\)

Thay lần lượt các giá trị x vào xem với giá trị nào của x thì A2 là số chính phương là xong!

30 tháng 11 2018

a)  x=2 :y thuộc {9: -9 }

b) đặt k nha bạn kq = 4/ 5

k nha

30 tháng 11 2018

1, \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)

Vì \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2012}\ge0\forall x\end{cases}\Rightarrow VT\ge0\forall x}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}}\)
Vậy ...................

20 tháng 2 2019

Thay x = -1/3 vào biểu thức A,ta có :

\(\left(-\frac{1}{3}\right)^3-5.\left(-\frac{1}{3}\right)^2+10\)

\(=\left(-\frac{1}{27}\right)-5.\frac{1}{9}+10\)

\(=\left(-\frac{1}{27}\right)-\frac{5}{9}+10\)

\(-\frac{16}{27}+10=\frac{286}{27}\)

Vậy ...

20 tháng 2 2019

Thay x = -0,5 vào biểu thức B ,ta có :

\(-0,5^3-4\left(-0,5\right)^2-7.\left(-0,5\right)-10\)

\(=-0,125-4.\left(-0,25\right)-3,7-10\)

\(=-0,125-\left(-1\right)-3,7-10\)

\(=\text{0.875-2,7-10}\)

\(=\text{-12.825}\)

3 tháng 8 2020

a)

Ta có bất đẳng thức cơ bản :\(\left|x-y\right|\ge0;\left(2-x\right)^2\ge0\Rightarrow\left|x-y\right|+\left(2-x\right)^2\ge0\)

\(\Rightarrow M\le13-0=13\)

Đẳng thức xảy ra tại x=y=2

b)

Bất đẳng thức cơ bản: \(\left(4-x^2\right)^4\ge0\Rightarrow\left(4-x^2\right)^4+7\ge7\Rightarrow N\le\frac{2}{7}\)

Đẳng thức xảy ra tại \(x=2;x=-2\)

c)

\(P=\frac{2x-1}{x-1}=\frac{2\left(x-1\right)+1}{x-1}=2+\frac{1}{x-1}\)

Đến đây bạn sử dụng \(x-1\ge1\Rightarrow x\ge2\)

Tự tính tiếp