Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Goi STN la a. Ta có:a:30(du 7)=> a+23 chia het cho 30
a:40(du17)=>a+23 chia het cho 40
=>a+23 thuoc BC(30,40)
BC(30,40)={120;240;360;480;600;720;840;960;...}
=>a+23 thuoc {120;240;360;480;600;720;840;960}
=>a thuoc {97;217;337;457;577;697;817;937}
Vi a co 3 c/s =>a thuoc{217;337;457;577;697;817;937}
Bài 1 :
Gọi 2 số cần tìm là a và b ( b<a<200 )
Ta có : ƯCLN(a;b)=15
=> a=15m và b=15n ( m>n ; m;n nguyên tố cùng nhau(1)(1) )
Do đó a-b=15m-15n=15.(m-n)=90
=> m-n=6(2)(2)
Do b<a<200 nên n<m<13(3)(3)
Từ (1);(2) và (3) ⇒(m;n)∈{(7;1);(11;5)}⇒(m;n)∈{(7;1);(11;5)}
⇒(a;b)∈{(105;15);(165;75)}
Vậy (a;b)∈{(105;15);(165;75)}
(a;b)∈{(105;15);(165;75)}
Gọi số tự nhiên nhỏ nhất đó là a (a thuộc N*)
Theo bài ra: a:2 dư 1
a:3 dư 1
a:4 dư 1
a:5 dư 1
a:6 dư 1
=> a-1 chia hết cho 2,3,4,5,6
=> a-1 thuộc BC(2,3,4,5,6)
Mà a là số tự nhiên nhỏ nhất nên a-1= BCNN(2,3,4,5,6)
Ta có 4=2 mũ 2
6=2.3
Do đó BCNN(2,3,4,5,6)=60
=>BC(2,3,4,5,6)=B(60)
=> a-1 thuộc {0,60,120,180,240,300,..}
=> a thuộc {1,61,121,181,241,301,..}
Lại có: a chia hết cho 7
=> a= 301
Vậy số tự nhiên cần tìm là 301
goi so can tim la a
a la so tu nhien nho nhat chia het cho 7=> a thuoc B(7)
ma a:2 du 1, chia cho 3 du 1, chia cho 4 du 1, chia cho 5 du 1, chia cho 6 du 1=> a thuoc BC(2,3,4,5,6,)+1
BCNN(2,3,4,5,6)=60
BC(2,3,4,5,6)={0;60;120;180;240;300;...}
BC(2,3,4,5,6)+1={1;121;181;241;301;...}
ma chi co 301 chia het cho 7=> a=301
vay so can tim la 301
Vì a chia 8 dư 5 ⇒⇒ a + 3 chia hết cho 8
a chia 10 dư 7 ⇒⇒ a + 3 chia hết cho 10
a chia 15 dư 12 ⇒⇒ a + 3 chia hết cho 15
a chia 20 dư 17 ⇒⇒ a + 3 chia hết cho 20
Mà a là nhỏ nhất ⇒⇒ a + 3 ∈ BCNN ( 8 ; 10 ; 15 ; 20 )
Ta có : 8 = 2323
10 = 2 . 5
15 = 3 . 5
20 = 2222 . 5
⇒⇒ BCNN ( 8 ; 10 ; 15 ; 20 ) = 2323 . 3 . 5 = 120
⇒⇒ a + 3 ∈ B ( 120 ) = { 0 ; 120 ; 240 ; 360 . . . }
⇒⇒ a ∈ { -3 ; 117 ; 237 ; 357 ; . . . }
Mà a chia hết cho 79 ⇒⇒ a = 237
Vậy số tự nhiên a nhỏ nhất cần tìm là 237.
lai
Ta có:
+) a chia hết cho b được thương là q thì a = b.q
+) Nếu a chia cho b được thương là dư r thì a = b.q + r
=> a - r = b.q => a - r chia hết cho b
Hoặc a + (b - r) = bq + r + (b - r) => a + (b - r) = bq + b = b(q+1) => a + (b - r) chia hết cho b
Ví dụ: a chia cho 5 dư 2 => a - 2 chia hết cho 5 hoặc a + 3 chia hết cho 5
gọi số cần tìm là a
ta có :
a chia 5 dư 2 chia 7 dư 4 chia 9 dư 6
=>a+3 chia hết cho 5;7;9
Vì a chia 5 dư 2=>a-2 chia hết cho 5=>a-2+5 chia hết cho 5=>a+3 chia hết cho 5
a chia 7 dư 4 =>a-4 chia hết cho 7 =>a-4+7 chia hết cho 7=>a+3 chia hết cho 7
a chia 9 dư 6 =>a-6 chia hết cho 9=>a-6+9 chia hết cho 9=>a+3 chia hết cho 9
nên lấy a+3 để xét BC của 5;7;9
....
Trl:
Gọi STN nhỏ nhất là a
Ta sẽ có :
a : 5 dư 3 => a - 2chia hết cho 5 => 2a - 4 chia hết cho 5
a : 7 dư 4 => a - 3 chia hết cho 7 => 2a - 1 chia hết cho 7
=> 2a - 1 chia hết cho 5;7
=> 2a - 1 \(\in\)BCNN( 5;7 )
TC : 5 = 5
7 = 7
BCNN( 5;7 ) = 5 . 7 = 35
=> 2a - 1 = 35
=> 2a = 35 + 1
=> 2a = 36
=> a = 36 : 2
=> a = 18
Vậy STN nhỏ nhất chia cho 5 dư 3 , chia cho 7 dư 4 là 18
Hc tốt
chia 5 dư 3 nên suy ra chia 5 dư 18
chia 7 dư 4 suy ra chia 7 dư 18
nên số đó trừ 18 chia hết cho 35 nên số đó bằng 18
Ta có: \(BCNN\left(70,210,210\right)=210\)
=> Số tự nhiên nhỏ nhất chia 70, 210, 210 đều dư 3 là 213
(bạn k thấy hỏi vô lí khi lặp lại tới hai lần 210 sao)
À , mk ghi nhầm đề ạ . Đề gốc đây ạ "Tìm số tự nhiên nhỏ nhất 3 chữ số khi chia số đó cho 70 , 210 , 420 đều dư 3 "
Giups mk với ạ