Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm số nguyên n sao cho n +5 chia hết cho n-2. 3
tìm số nguyên n sao cho 2n +1 chia hết cho n -5 6
a)
(2n+1) chia hết cho (n+3)
=> (2n+6) - 5 chia hết cho (n+3)
Mà 2n+6 chia hết cho (n+3)
nên 5 chia hết cho (n+3)
=> (n+3)={0;5;10;15,...}
=> n={-3;2;7;12;...}
Mà n thuộc N
=> n={2;7;12;....}
Mấy câu sau bạn làm tương tự nha.
CHÚC BẠN HOK TỐT !!!!!!!!!!
a) \(\left(2n+1\right)⋮\left(n-3\right)\)
\(\Leftrightarrow\left(2n-6\right)+7⋮\left(n-3\right)\)
\(\Leftrightarrow2\left(n-3\right)+7⋮\left(n-3\right)\)mà \(2\left(n-3\right)⋮\left(n-3\right)\)
\(\Leftrightarrow7⋮\left(n-3\right)\)
\(\Leftrightarrow\left(n-3\right)\inƯ\left(7\right)\)Mặt khác \(n\in N\) nên\(n-3\in N\)
\(\Leftrightarrow n-3=7\)
\(\Leftrightarrow n=10\)
b) \(\left(n+8\right)⋮\left(n-11\right)\)
\(\Leftrightarrow\left(n-11\right)+19⋮\left(n-11\right)\)mà \(\left(n-11\right)⋮\left(n-11\right)\)
\(\Leftrightarrow19⋮\left(n-11\right)\)
\(\Leftrightarrow\left(n-11\right)\inƯ\left(19\right)\)Mặt khác \(n\in N\)nên \(n-11\in N\)
\(\Leftrightarrow n-11=19\)
\(\Leftrightarrow n=30\)
bài tập đội tuyển hay chuyên đề vậy?
Mình làm vd 2 bài nha:
a) n+6 chia hết cho n+2
n+2 chia hết cho n+2
nên (n+6)-(n+2) chia hết cho n+2
4 chia hết cho n-2
=> n-2 = 1;-1;2;-2;4;-4
=> n=3;1;4;0;6
d) n^2 +4 chia hết cho 4
n+1 chia hết cho n+1 nên (n+1)(n+1) chia hết cho n+1 hay n2+2n+1 chia hết cho n+1
=> (n^2+2n+1)-(n^2+4) chia hết cho n-1
=> 2n+1-4 chia hết cho n-1
=> 2n - 3 chia hết cho n-1
n-1 chia hết cho n-1 nên 2n-2 chia hết cho n-1
=> (2n-2)-(2n-3) chia hết cho n-1
=> 1 chia hết cho n-1
=> n-1 = 1;-1
=> n=0
Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
Làm mẫu câu a bài 1. vì các câu còn lại tương tự
n+7 chia hết cho n-5
\(\Rightarrow\left(n+7\right)-\left(n-5\right)⋮n-5\)
\(\Rightarrow12⋮n-5\)
\(\Rightarrow n-5\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
ta có bảng :
n-5 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | 6 | 4 | 7 | 3 | 8 | 2 | 9 | 1 | 11 | -1 | 17 | -7 |
vậy \(n\in\left\{6;4;7;3;8;2;9;1;11;-1;17;-7\right\}\)
2. làm mẫu câu a:
(2a+3)(b-3)=-12
=>(2a+3);(b-3)\(\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
TH1:
2a+3=1 ;b-3=-12
2a=-2 =>b=-9
=>a=-1
sau đó em ghép siêu nhiều trường hợp còn lại .
có 12TH tất cả em nhé .
\(\frac{2n+1}{n-3}=\frac{2n-6+7}{n-3}=2+\frac{7}{n-3}\)
để phân số là số tự nhiên =>\(n-3\inƯ\left(7\right)=\left\{1,7\right\}\)( chắc lớp 6 chưa học số âm bạn nhỉ ? )
\(\orbr{\begin{cases}n-3=1\\n-3=7\end{cases}\Leftrightarrow\orbr{\begin{cases}n=4\\n=10\end{cases}}}\)
Vậy n=4,n=10 thì \(2n+1⋮n-3\)
Câu 2:
gọi số thứ nhất là k
=> 3 số tiếp theo là k+1,k+2,k+3
tổng của 4 số => \(k+\left(k+1\right)+\left(k+2\right)+\left(k+3\right)\)
\(\Rightarrow4k+6\)
Ta có \(4⋮4\Rightarrow4k⋮4\)
6 không chia hết cho 4
=> 4k+6 không chia hết cho 4
=> tổng 4 số tự nhiên liên tiếp không chia hết cho 4
gọi y là số thứ nhất
=> y+1,y+2,y+3,y+4 là 4 số tiếp theo
tổng 5 số = \(y+\left(y+1\right)+\left(y+2\right)+\left(y+3\right)+\left(y+4\right)\)
=\(5y+10\)
ta có 5y chia hết cho 5
10 chia hết cho 5
=> 5y+10 chia hết cho 5
=> tổng 5 số tự nhiên liên tiếp chia hết cho 5
n + 4 chia hết cho n - 1
=> ( n - 1 ) + 5 chia hết cho n - 1
Mà n - 1 chia hết cho n - 1
=> 5 chia hết cho n - 1
=> n -1 thuộc Ư(5) = { 1 ; 5 }
=> n thuộc { 2 ; 6 }
a) Có: \(29⋮n\)
\(\Rightarrow n\inƯ\left(29\right)=\left\{\pm1;\pm29\right\}\)
Vậy \(n\in\left\{\pm1;\pm29\right\}\).
b) Có: \(18⋮n-2\)
\(\Rightarrow n-2\inƯ\left(18\right)=\left\{\pm1;\pm2;\pm3;\pm6;\pm9;\pm18\right\}\)
\(\Rightarrow n\in\left\{3;1;4;0;5;-1;8;-4;11;-7;20;-16\right\}\)
Vậy \(n\in\left\{3;1;4;0;5;-1;8;-4;11;-7;20;-16\right\}\)
c) Có: \(n+3⋮n+1\)
\(\Rightarrow n+1+2⋮n+1\)
\(\Rightarrow2⋮n+1\)
\(\Rightarrow n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Rightarrow n\in\left\{0;-2;1;-3\right\}\)
Vậy \(n\in\left\{0;-2;1;-3\right\}\).
d) Có: \(2n+3⋮2n+1\)
\(\Rightarrow2n+1+2⋮2n+1\)
\(\Rightarrow2⋮2n+1\)
Mà 2n+1 là số nguyên lẻ nên \(2n+1=\pm1\)
\(\Rightarrow n\in\left\{0;-1\right\}\)
Vậy \(n\in\left\{0;-1\right\}.\)
a) 29 chia hết cho
=> n thuộc Ư(29)
Mà Ư(29) = 1 ; 29
Vậy n = 1 ; 29
c)n+3 chia hết cho n+1
= (n+1) + 2 chia hết cho n +1
Bỏ n+1 vì n+1 chia hết cho n+1
Có : 2 chia hết cho n+1
=> n+1 là Ư(2)
Ư(2) = 1 ; 2
=> n = 2-1 ; 1-1
=> n = 1 ; 0
d)2n+3 chia hết cho 2n-1
Bỏ 2 vì 2 chia hết cho 2
Có : n+3 chia hết cho n + 1
(n+1) + 2 chia hết cho n +1
Bỏ n+1 vì n+1 chia hết cho n+1
Có : 2 chia hết cho n+1 => n+1 là Ư(2)
Ư(2) = 1 ; 2
n = 2-1 ; 1-1
n = 1 ; 0
a)2n+1 chia hết cho n-2
=>2n-4+5 chia hết cho n-2
=>5 chia hết cho n-2(vì 2n-4 chia hết cho n-2)
=>n-2\(\in\)Ư(5)={-5;-1;1;5}
=>n\(\in\){-3;1;3;8}
b)2n-5 chia hết cho n+1
=>2n+2-7 chia hết cho n+1
=>7 chia hết cho n+1(vì 2n+2 chia hết cho n+1)
=>n+1\(\in\)Ư(7)={-7;-1;1;7}
=>n\(\in\){-8;-2;0;6}
a) 23 + 1 : 3 - 2
b) nỏ bít