Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n + 4 chia hết cho n - 1
=> ( n - 1 ) + 5 chia hết cho n - 1
Mà n - 1 chia hết cho n - 1
=> 5 chia hết cho n - 1
=> n -1 thuộc Ư(5) = { 1 ; 5 }
=> n thuộc { 2 ; 6 }
a,
Ta có n \(⋮\)n => 4 \(⋮\)n
=> n \(\in\)Ư ( 4 ) = { 1 ; - 1 ; 2 ; - 2 ; 4 ; - 4 }
Vì n là số tự nhiên => n \(\in\){ 1 ; 2 ; 4 }
b,
Ta có 3n \(⋮\)n => 7 \(⋮\)n
=> n \(\in\)Ư ( 7 ) = { 1 ; 7 }
c,
5n \(⋮\)n => 27 \(⋮\)n
=> n \(\in\)Ư ( 27 ) = { 1 ; 3 ; 9 ; 27 }
a) \((n+4) \vdots 2 \Rightarrow n \vdots n;4 \vdots n \Rightarrow n \epsilon B(4) \Rightarrow n={1;2;4}\)
b)\((3n+7) \vdots n \Rightarrow 7 \vdots n \Rightarrow n=1;7\)
c)\((27-5n) \vdots n \Rightarrow 27 \vdots n ;5n \leq 27 \Rightarrow n=1;3.\)
Chúc bn học tốt (^^)
Tìm n thuộc Z để n^3+3n-13 chia hết cho n+3
.................................. ( tính )
=> = 16
hơi dài nên mik ghi kết quả thôi !
Ta có: \(\left(3n+6\right)+2⋮\left(n+2\right)\)
\(3\left(n+2\right)+2⋮\left(n+2\right)\)
Ta thấy 3(n+2) chia hết cho (n+2)
Để 3(n+2)+2 chia hết cho (n+2) thì 2 chia hết cho (n+2)
Lập bảng:
n+2 | 1 | 2 |
n | -1 | 0 |
Mà n là số tự nhiên, suy ra n=0
( 3n + 8 ) chia hết cho ( n + 2 )
\(\Rightarrow\) 3n + 6 + 2 chia hết cho n + 2
\(\Rightarrow\) 3 . ( n + 2 ) + 2 chia hết cho n + 2
Mà 3 . ( n + 2 ) chia hết cho 2
\(\Rightarrow\) 2 chia hết cho n + 2
\(\Rightarrow\) n + 2 \(\in\) Ư (2) = { 1 ; 2 }
\(\Rightarrow\) +) n + 2 = 1
Mà n là số tự nhiên nên không có trường hợp n + 2 = 1 ( loại )
n + 2 = 2
\(\Rightarrow\) n = 2 - 2 = 0
Vậy n = 0
Mình làm vd 2 bài nha:
a) n+6 chia hết cho n+2
n+2 chia hết cho n+2
nên (n+6)-(n+2) chia hết cho n+2
4 chia hết cho n-2
=> n-2 = 1;-1;2;-2;4;-4
=> n=3;1;4;0;6
d) n^2 +4 chia hết cho 4
n+1 chia hết cho n+1 nên (n+1)(n+1) chia hết cho n+1 hay n2+2n+1 chia hết cho n+1
=> (n^2+2n+1)-(n^2+4) chia hết cho n-1
=> 2n+1-4 chia hết cho n-1
=> 2n - 3 chia hết cho n-1
n-1 chia hết cho n-1 nên 2n-2 chia hết cho n-1
=> (2n-2)-(2n-3) chia hết cho n-1
=> 1 chia hết cho n-1
=> n-1 = 1;-1
=> n=0
Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
Ta có:
\(\frac{3n+8}{n+2}=\frac{3n+4+4}{n+2}=\frac{3\left(n+2\right)+4}{n+2}=\frac{n+2}{n+1}+\frac{4}{n+2}=1+\frac{4}{n+2}\)
Suy ra n+2 thuộc Ư(4)
Ư(4)là:[1,-1,2,-2,4,-4]
ta có bảng sau:
Mà n là số nguyên
Suy ra n=0;2
ủng hộ đầu xuân năm mới tròn 770 nha