Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Sửa: C=(x+2)2+\(\left(y-\frac{1}{5}\right)^2\)+10
Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(y-\frac{1}{5}\right)^2\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2+10\ge10\forall x;y\)
hay C \(\ge10\). Dấu "=" \(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-\frac{1}{5}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+2=0\\y-\frac{1}{5}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}}}\)
a, \(C=A-B=\left(x^2-10xy+2017y^2+2y\right)-\left(5x^2-8xy+2017y^2+3y-2018\right)\)
\(=x^2-10xy+2017y^2+2y-5x^2+8xy-2017y^2-3y+2018\)
\(=-4x^2-2xy-y+2018\)
b, \(C=-4x^2-2xy-y+2018\)
\(=-2x\left(2x+y\right)-y+2018\)
\(=-2x-y+2018=-1+2018=2017\)
Áp dụng bất đẳng thức GTTĐ \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có :
\(A=\left|x+1\right|+\left|y-2\right|\ge\left|x+1+y-2\right|=\left|x+y-1\right|\)
Thay x+y=5 vào A ta có :
\(A\ge\left|5-1\right|=\left|4\right|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+1\ge0\\y-2\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\y\ge2\end{cases}}}\)
Vậy Amin = 4 <=> x >=-1 và y >=2
\(A=\left|x+1\right|+\left|y-2\right|\ge\left|x+1+y-2\right|=\left|4\right|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}x+1\ge0\\y-2\ge0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\ge-1\\y\ge2\end{cases}}}\)
Vậy:\(A_{Min}=4\Leftrightarrow\hept{\begin{cases}x\ge-1\\y\ge2\end{cases}}\)
1, \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
Vì \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2012}\ge0\forall x\end{cases}\Rightarrow VT\ge0\forall x}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}}\)
Vậy ...................
Vì \(\left|\left|3x-3\right|+2x+\left(-1\right)^{2016}\right|\ge0\forall x\)
\(\Rightarrow3x+2017^0\ge0\Rightarrow x\ge-\frac{1}{3}\)
Khi đó: \(\left|\left|3x-3\right|+2x+1\right|=3x+1\)
\(\Leftrightarrow\orbr{\begin{cases}\left|3x-3\right|+2x+1=3x+1\\\left|3x-3\right|+2x+1=-3x-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left|3x-3\right|=x\\\left|3x-x\right|=-5x-2\end{cases}}\)
Để |3x - 3| = x => \(x\ge0\)
=> \(\orbr{\begin{cases}3x-3=x\\3x-3=-x\end{cases}\Rightarrow\orbr{\begin{cases}2x=3\\4x=3\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{3}{2}\left(tm\right)\\x=\frac{3}{4}\left(tm\right)\end{cases}}}\)
Để |3x - 3| = - 5x - 2
=> \(-5x-2\ge0\Rightarrow x\le-\frac{2}{5}\)
=> \(\orbr{\begin{cases}3x-3=5x+2\\3x-3=-5x-2\end{cases}\Rightarrow\orbr{\begin{cases}-2x=5\\8x=1\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{5}{2}\left(\text{tm}\right)\\x=\frac{1}{8}\left(\text{loại}\right)\end{cases}}}\)
Vậy \(x\in\left\{\frac{-5}{2};\frac{3}{2};\frac{3}{4}\right\}\)
\(A=2x^2+2xy+y^2-2x+2y+1\)
\(A=x^2+2xy+y^2+2x+2y+x^2-4x+4+1-4\)
\(A=\left(x+y\right)^2+2\left(x+y\right)+1+\left(x^2-4x+4\right)-4\)
\(A=\left(x+y+1\right)^2+\left(x-2\right)^2-4\)
Vì \(\left(x+y+1\right)^2\ge0\forall x;y\)và \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow A\ge-4\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y+1=0\\x-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)
Vậy....