\(A=2x^2+2xy+y^2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2019

\(A=2x^2+2xy+y^2-2x+2y+1\)

\(A=x^2+2xy+y^2+2x+2y+x^2-4x+4+1-4\)

\(A=\left(x+y\right)^2+2\left(x+y\right)+1+\left(x^2-4x+4\right)-4\)

\(A=\left(x+y+1\right)^2+\left(x-2\right)^2-4\)

Vì \(\left(x+y+1\right)^2\ge0\forall x;y\)và \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow A\ge-4\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y+1=0\\x-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)

Vậy....

25 tháng 3 2020

a) Sửa: C=(x+2)2+\(\left(y-\frac{1}{5}\right)^2\)+10

Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(y-\frac{1}{5}\right)^2\ge0\forall y\end{cases}}\)

\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2+10\ge10\forall x;y\)

hay C \(\ge10\). Dấu "=" \(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-\frac{1}{5}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+2=0\\y-\frac{1}{5}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}}}\)

27 tháng 3 2020
Cam on ban
1 tháng 4 2020

a, \(C=A-B=\left(x^2-10xy+2017y^2+2y\right)-\left(5x^2-8xy+2017y^2+3y-2018\right)\)

\(=x^2-10xy+2017y^2+2y-5x^2+8xy-2017y^2-3y+2018\)

\(=-4x^2-2xy-y+2018\)

b, \(C=-4x^2-2xy-y+2018\)

\(=-2x\left(2x+y\right)-y+2018\)

\(=-2x-y+2018=-1+2018=2017\)

22 tháng 10 2018

Áp dụng bất đẳng thức GTTĐ \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có :

\(A=\left|x+1\right|+\left|y-2\right|\ge\left|x+1+y-2\right|=\left|x+y-1\right|\)

Thay x+y=5 vào A ta có :

\(A\ge\left|5-1\right|=\left|4\right|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+1\ge0\\y-2\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\y\ge2\end{cases}}}\)

Vậy Amin = 4 <=> x >=-1 và y >=2

23 tháng 10 2018

\(A=\left|x+1\right|+\left|y-2\right|\ge\left|x+1+y-2\right|=\left|4\right|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}x+1\ge0\\y-2\ge0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\ge-1\\y\ge2\end{cases}}}\)

Vậy:\(A_{Min}=4\Leftrightarrow\hept{\begin{cases}x\ge-1\\y\ge2\end{cases}}\)

30 tháng 11 2018

a)  x=2 :y thuộc {9: -9 }

b) đặt k nha bạn kq = 4/ 5

k nha

30 tháng 11 2018

1, \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)

Vì \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2012}\ge0\forall x\end{cases}\Rightarrow VT\ge0\forall x}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}}\)
Vậy ...................

2 tháng 12 2019

Nhanh lên ại

2 tháng 12 2019

Cô Linh Chi và bạn khác vào giúp ạ

2 tháng 12 2019

Vì \(\left|\left|3x-3\right|+2x+\left(-1\right)^{2016}\right|\ge0\forall x\)

\(\Rightarrow3x+2017^0\ge0\Rightarrow x\ge-\frac{1}{3}\)

Khi đó: \(\left|\left|3x-3\right|+2x+1\right|=3x+1\)

\(\Leftrightarrow\orbr{\begin{cases}\left|3x-3\right|+2x+1=3x+1\\\left|3x-3\right|+2x+1=-3x-1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left|3x-3\right|=x\\\left|3x-x\right|=-5x-2\end{cases}}\)

Để |3x - 3| = x => \(x\ge0\) 

=> \(\orbr{\begin{cases}3x-3=x\\3x-3=-x\end{cases}\Rightarrow\orbr{\begin{cases}2x=3\\4x=3\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{3}{2}\left(tm\right)\\x=\frac{3}{4}\left(tm\right)\end{cases}}}\)

Để |3x - 3| = - 5x - 2 

=> \(-5x-2\ge0\Rightarrow x\le-\frac{2}{5}\)

=> \(\orbr{\begin{cases}3x-3=5x+2\\3x-3=-5x-2\end{cases}\Rightarrow\orbr{\begin{cases}-2x=5\\8x=1\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{5}{2}\left(\text{tm}\right)\\x=\frac{1}{8}\left(\text{loại}\right)\end{cases}}}\)

Vậy \(x\in\left\{\frac{-5}{2};\frac{3}{2};\frac{3}{4}\right\}\)

21 tháng 3 2020

Bài 2 :

Bài 1 : Tìm x biết : ||3x−3|+2x+(−1)2016|=3x+20170Bài 2 : Tìm giá trị nhỏ nhất của biểu thức : A=|x−2008|+|x−2009|+|y−2010|+|x−2011|+2011Các bạn học giỏi vào giúp ạ !!!