Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra ta có:
a= 11x+5
a= 13y+8
\(a+83=11x+5+83\Rightarrow a+83⋮11\)(1)
\(a+83=13y+8+83\Rightarrow a+83⋮13\)(2)
Từ (1) và (2) thì a+83 thuộc BC(11,13)
BCNN(11,13)=143
=> a+83 thuộc B(143)={0;143;286;...}
=> a thuộc {60;203;...}
Vì a là số bé nhất có 3 chữ số nên a= 203.
Vậy số cần tìm là 203.
1)
a) Do \(\hept{\begin{cases}12;18;16⋮2\\A⋮2\end{cases}\Rightarrow x⋮2}\)
\(\Rightarrow x\in\left\{0;2;4;6;...\right\}\)
b) Do \(\hept{\begin{cases}12;18;16⋮2\\A⋮̸2\end{cases}}\Rightarrow x⋮̸2\)
\(\Rightarrow x\in\left\{1;3;5;7;...\right\}\)
2)
Ta có:
Do \(a:36\)dư\(16\Rightarrow a=36k+16\left(k\in N\right)\)
+ Vì \(\hept{\begin{cases}36k⋮2\\16⋮2\end{cases}\Rightarrow a⋮2}\)
+ Vì \(\hept{\begin{cases}36k⋮4\\16⋮4\end{cases}\Rightarrow a⋮4}\)
+ Vì \(\hept{\begin{cases}36k⋮18\\16⋮̸18\end{cases}\Rightarrow a⋮̸}18\)
Bài 1
a/ \(\overline{123a}+3\) chia hết cho 8
\(\Rightarrow\overline{123a}+3=1230+a+3=1233+a=1232+\left(a+1\right)=8.154+\left(a+1\right)\) chia hết cho 8
8.154 chia hết cho 8 => a+1 chia hết cho 8 => a=7
b/ \(\overline{123ab}+8\) chia hết cho 25
\(\Rightarrow\overline{123ab}+8=12300+\overline{ab}+8=25.492+\overline{ab}+8\) chia hết cho 25
25.492 chia hết cho 25 => \(\overline{ab}+8\) chia hết cho 25 => \(\overline{ab}=\left\{17;42;67;92\right\}\)
Bài 2
\(\frac{n^2+2n+7}{n+2}=\frac{n\left(n+2\right)+7}{n+2}=n+\frac{7}{n+2}\)
Để phép chia là chia hết thì 7 phải chia hết cho n+2
\(\Rightarrow n+2=\left\{-7;-1;1;7\right\}\Rightarrow n=\left\{-9;-3;-1;5\right\}\)
Do n là số tự nhiên => n=5
Vì a chia 8 dư 5 ⇒⇒ a + 3 chia hết cho 8
a chia 10 dư 7 ⇒⇒ a + 3 chia hết cho 10
a chia 15 dư 12 ⇒⇒ a + 3 chia hết cho 15
a chia 20 dư 17 ⇒⇒ a + 3 chia hết cho 20
Mà a là nhỏ nhất ⇒⇒ a + 3 ∈ BCNN ( 8 ; 10 ; 15 ; 20 )
Ta có : 8 = 2323
10 = 2 . 5
15 = 3 . 5
20 = 2222 . 5
⇒⇒ BCNN ( 8 ; 10 ; 15 ; 20 ) = 2323 . 3 . 5 = 120
⇒⇒ a + 3 ∈ B ( 120 ) = { 0 ; 120 ; 240 ; 360 . . . }
⇒⇒ a ∈ { -3 ; 117 ; 237 ; 357 ; . . . }
Mà a chia hết cho 79 ⇒⇒ a = 237
Vậy số tự nhiên a nhỏ nhất cần tìm là 237.
lai
Bài 1: Rút gọn các phân số sau đến tối giản:
a) \(\frac{49+7.49}{49}=\frac{49\left(1+7\right)}{49}=8\)
b) \(\frac{9.6-9.3}{18}=\frac{9\left(6-3\right)}{18}=\frac{27}{18}=\frac{3}{2}\)
c) \(\frac{17.5-17}{3-20}=\frac{17\left(5-1\right)}{-17}=\frac{68}{-17}=-4\)
Bài 2: Tính giá trị của biểu thức:
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)
\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
\(A=\frac{1}{5}-\frac{1}{12}\)
\(A=\frac{7}{60}\)
Bài 3: Một số chia cho 7 dư 3, chia cho 17 dư 12, chia cho 23 dư 7. Hỏi số đó chia cho 2737 dư bao nhiêu?
Gọi số đã cho là A, theo đề bài ta có :
A = 7.a + 3 = 17.b + 12 = 23.c + 7
Mặt khác :
A + 39 = 7.a + 3 + 39 = 17.b + 12 + 39 = 23.c + 7 + 39
= 7(a + 6) = 17(b + 3) = 23(c + 2)
Như vậy A + 39 đồng thời chia hết cho 7, 17 và 23
Nhưng 7, 17 và 23 đồng thời là 3 số nguyên tố cùng nhau nên :
(A + 39) 7.17.23 hay (A + 39) 2737
Suy ra A + 39 = 2737.k suy ra A = 2737.k 39 = 2737(k - 1) + 2698
Do 2698 < 2737 nên 2698 là số dư của phép chia A cho 2737
Vì a : 8 dư 5 => a + 3 chia hết cho 8
a : 10 dư 7 => a + 3 chia hết cho 10
a : 15 dư 12 => a + 3 chia hết cho 15
a : 20 dư 17 => a + 3 chia hết cho 20
=> a + 3 thuộc BC(8; 10; 15; 20)
8 = 23
10 = 2 . 5
15 = 3 . 5
20 = 22 . 5
BCNN(8; 10; 15; 20) = 23 . 3 . 5 = 120
a + 3 thuộc BC(8; 10; 15; 20) = {0; 120; 240; 360;....}
=> a thuộc {-3; 117; 237; 357;...}
Mà a là số tự nhiên nhỏ nhất => a = 117
Vậy số cần tìm là 117
CHTT nha bạn !