K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2020

Ta có: \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\frac{\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)

\(=\frac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)

\(=\frac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)

...

\(=\frac{\left(3^{32}-1\right)\left(3^{32}+1\right)}{2}\)

\(=\frac{3^{64}-1}{2}\)

2 tháng 10 2020

              Bài làm :

Đặt biểu thức là A

Ta có :

 A=(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)

=>2A=2.(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)

2A=(3-1)(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)

2A=(32-1)(32+1)(34+1)(38+1)(316+1)(332+1)

2A=(34-1)(34+1)(38+1)(316+1)(332+1)

2A=(38-1)(38+1)(316+1)(332+1)

2A=(316-1)(316+1)(332+1)

2A=(332-1)(332+1)

2A=364-1

=>A=(364 - 1)/2

23 tháng 7 2019

\(8.\left(3^2+1\right).\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)-3^{32}\)

\(=\left(3^2-1\right).\left(3^2+1\right).\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)-3^{32}\)

\(=\left(3^4-1\right).\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)-3^{32}\)

\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)-3^{32}\)

\(=\left(3^{16}-1\right)\left(3^{16}+1\right)-3^{32}=3^{32}-1-3^{32}=-1\)

7 tháng 7 2023

C
 

17 tháng 7 2019

\(2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=8\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(=3^{32}-1< 3^{32}\)

Gợi ý: Sử dụng liên tục tính chất \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)

17 tháng 7 2019

2(3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)

= (3 - 1)(3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)

= (32 - 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)

= (34 - 1)(34 + 1)(38 + 1)(316 + 1)

= (38 - 1)(38 + 1)(316 + 1)

= (316 - 1)(316 + 1)

= 332 - 1 < 332 

8 tháng 3 2020

Ta có \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\cdot\cdot\cdot\left(3^{64}+1\right)\)

\(\Rightarrow2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\cdot\cdot\cdot\left(3^{64}+1\right)\)

\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\cdot\cdot\cdot\left(3^{64}+1\right)\)

\(=\left(3^4-1\right)\left(3^4+1\right)\cdot\cdot\cdot\left(3^{64}+1\right)\)

\(=\left(3^{64}-1\right)\left(3^{64}+1\right)=\left(3^{128}-1\right)\)

\(\Rightarrow A=\frac{3^{128}-1}{2}\)

Hắc hắc :P Cứ làm từ từ sẽ thành công em ạ :D

\(=\frac{a+b+a-b}{a^2-b^2}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{2a\left(a^2+b^2\right)+2a\left(a^2-b^2\right)}{a^4-b^4}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{4a^3\left(a^4+b^4\right)+4a^3\left(a^4-b^4\right)}{a^8-b^8}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{8a^7\left(a^8+b^8\right)+8a^7\left(a^8-b^8\right)}{\left(a^8-b^8\right)\left(a^8+b^8\right)}\)

\(=\frac{16a^{15}}{a^{16}-b^{16}}\)

4 tháng 12 2019

\(\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)+3\left(x-1\right)\left(x+1\right).\)

\(=x^3-3x^2+3x-1-\left(x^3-2^3\right)+3\left(x^2-1\right)\)

\(=x^3-3x^2+3x-1-x^3+8+3x^2-3\)

\(=3x+4\)

4 tháng 12 2019

\(\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)+3\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)^3-\left(x^3+8\right)+3\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)^3-x^3-8+3\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1-x\right)+3x\left(x-1\right)\left(x-1-x\right)-8+3\left(x-1\right)\left(x+1\right)\)(1)

\(=-1-3x\left(x-1\right)-8+3\left(x-1\right)\left(x+1\right)\)

\(=3\left(x-1\right)\left(-x+x+1\right)-9=3\left(x-1\right)-9=3\left(x-4\right)=3x-12\)

(1) là hằng đẳng thức \(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)\)

làm nhiều rồi 

hehe

hihi

30 tháng 8 2019

3/

a/ \(A=\left(x-y\right)^2+\left(x+y\right)^2.\)

\(A=\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2\right)\)

\(A=x^2-2xy+y^2+x^2+2xy+y^2\)

\(A=2x^2+2y^2\)

b/ \(B=\left(2a+b\right)^2-\left(2a-b\right)^2\)

\(B=\left(4a^2+4ab+b^2\right)-\left(4a^2-4ab+b^2\right)\)

\(B=4a^2+4ab+b^2-4a^2+4ab-b^2\)

\(B=8ab\)

c/ \(C=\left(x+y\right)^2-\left(x-y\right)^2\)

\(C=\left(x^2+2xy+y^2\right)-\left(x^2-2xy+y^2\right)\)

\(C=x^2+2xy+y^2-x^2+2xy-y^2\)

\(C=4xy\)

d/ \(D=\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)

\(D=\left(4x^2-4x+1\right)-2\left(4x^2-12x+9\right)+4\)

\(D=4x^2-4x+1-8x^2+24x-18+4\)

\(D=-4x^2+20x-13\)

4 tháng 10 2020

\(M=4.6\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)\(=\left(5-1\right)\left(5+1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)\(=\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)=\left(5^{16}-1\right)\left(5^{16}+1\right)=5^{32}-1\)

Vậy M <N

14 tháng 3 2020

Bài 2 

a. (x-2y)2 =2x-4y

b. (2x^2 +3)2 =4x^2+6

c. (x-2) (x^2+2x+4) = x^3-8 (hằng đẳng thức)

d. (2x-1)3 = 6x-3

 Xin lỗi mik chỉ lm ổn bài 2 thôi!

14 tháng 2 2020

\(A=\left(3+1\right)\left(3^2+1\right)...\left(3^{64}+1\right)\)

\(\Leftrightarrow\left(3-1\right)A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)...\left(3^{64}+1\right)\)

\(\Leftrightarrow2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(\Leftrightarrow2A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(\Leftrightarrow2A=3^{128}-1\)

\(\Leftrightarrow A=\frac{3^{128}-1}{2}\)