\(a-\frac{a\left(-6a+5\right)}{a-1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2015

\(\frac{a\left(a-1\right)}{a-1}-\frac{a\left(-6a+5\right)}{a-1}=\frac{a^2-a+6a^2-5a}{a-1}\)

=\(\frac{7a^2-6a}{a-1}\)

7 tháng 9 2015

quy đòng, xong phá ngoặc là xong, nhớ tìm ĐKXĐ nữa

29 tháng 6 2019

ĐK: a,b>0 , a khác b

\(A=\left[\frac{\sqrt{a}-\sqrt{b}}{\sqrt{b}}.\frac{\sqrt{a}+\sqrt{b}}{\sqrt{b}}\right]:\left(\frac{a^2-b^2}{ab}\right)\)

\(=\frac{a-b}{b}:\frac{\left(a-b\right)\left(a+b\right)}{ab}=\frac{a-b}{b}.\frac{ab}{\left(a-b\right)\left(a+b\right)}=\frac{a}{a+b}\)

Với b=1, A=2 ta có: 

\(\frac{a}{a+1}=2\Leftrightarrow a=2a+2\Leftrightarrow a=-2\) loại 

vậy không tồn tại a để A=2 b=1

29 tháng 6 2019

\(A=\left[\left(\sqrt{\frac{a}{b}}-1\right).\left(\sqrt{\frac{a}{b}}+1\right)\right]:\left(\frac{a}{b}-\frac{b}{a}\right)\)

\(A=\left[\left(\sqrt{\frac{a}{b}}\right)^2-1\right]:\left(\frac{a^2}{ab}-\frac{b^2}{ab}\right)\)

\(A=\left(\frac{a}{b}-1\right):\left[\frac{\left(a-b\right)\left(a+b\right)}{ab}\right]\)

\(A=\left(\frac{a-b}{b}\right).\left[\frac{ab}{\left(a-b\right)\left(a+b\right)}\right]\)

\(A=\frac{a}{a+b}\)

30 tháng 6 2019

      ĐK :\(\hept{\begin{cases}x>=0\\x\ne1\end{cases}}\)

Ta có: \(A=\left[\frac{1}{\sqrt{x}+1}-\frac{2\left(x-1\right)}{\sqrt{x}\left(x-1\right)+x-1}\right]:\left[\frac{\sqrt{x}+1}{x-1}-\frac{2}{x-1}\right]\)

          

28 tháng 7 2019

\(A=\frac{\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(A=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{4}{x-1}\)

b) \(\frac{4}{x-1}=7\)

\(\Leftrightarrow4=7.\left(x-1\right)\)

\(\Leftrightarrow\frac{4}{7}=x-1\)

\(\Leftrightarrow\frac{4}{7}+1=x\)

\(\Leftrightarrow\frac{11}{7}=x\)

\(\Rightarrow x=\frac{11}{7}\)

em ko bieets hu hu

11 tháng 6 2019

#)Giải :

a) \(A=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x\sqrt{x}}{\sqrt{x}-1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)

\(=\frac{x-1}{2\sqrt{x}}\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)^2-\sqrt{x}\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\frac{x-1}{2\sqrt{x}}.\frac{x\sqrt{x}-2x+\sqrt{x}-x\sqrt{x}-2x-\sqrt{x}}{x-1}\)

\(=\frac{-4}{2\sqrt{x}}=-2\sqrt{x}\)

30 tháng 8 2015

\(\frac{a}{\sqrt{a^2-b^2}}-\left(1+\frac{a}{\sqrt{a^2-b^1}}\right):\frac{b}{a-\sqrt{a^2-b^2}}\)

\(=\frac{a}{\sqrt{a^2-b^2}}-\left(\frac{\sqrt{a^2-b^2}}{\sqrt{a^2-b^2}}+\frac{a}{\sqrt{a^2-b^2}}\right).\frac{a-\sqrt{a^2-b^2}}{b}\)

\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{a+\sqrt{a^2-b^2}}{\sqrt{a^2-b^2}}.\frac{a-\sqrt{a^2-b^2}}{b}\)

\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{a^2-\left(a^2-b^2\right)}{b.\sqrt{a^2-b^2}}\)

\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{a^2-a^2+b^2}{b\sqrt{a^2-b^2}}\)

\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{b^2}{b\sqrt{a^2-b^2}}\)

\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{b}{\sqrt{a^2-b^2}}\)

\(=\frac{a-b}{\sqrt{a^2-b^2}}\)

\(=\frac{a-b}{\sqrt{a-b}.\sqrt{a+b}}\)

\(=\frac{\sqrt{a-b}}{\sqrt{a+b}}\)

\(=\frac{\sqrt{a^2-b^2}}{a+b}\)

10 tháng 1 2016

 a) Rút gọn :M= \(a-2\sqrt{a}\)

b) \(M\le0\Leftrightarrow a-2\sqrt{a}\le0\)

\(\Leftrightarrow a\le2\sqrt{a}\Leftrightarrow\left(\sqrt{a}\right)^2\le2\sqrt{a}\)

\(\Leftrightarrow\sqrt{a}\times\sqrt{a}\le2\sqrt{a}\)

\(\Rightarrow\sqrt{a}\le2\left(a>0\right)\Leftrightarrow a\le4\)

Vì a # 4 và a > 0 nên 0 < a < 4

  Vậy 0 < a < 4 thì M\(\le\)1

10 tháng 1 2016

Cảm ơn Nguyễn Trọng Tuần nhiều nha!!

 

27 tháng 9 2019

câu a rút gọn

M = \(\frac{\sqrt{a}-1}{\sqrt{a}}\)