Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x^3-2x^2+3x-6=x\left(x^2+3\right)-2\left(x^2+3\right)=\left(x-2\right)\left(x^2+3\right)\)
b, \(x^2+2x+1-4y^2=\left(x+1\right)^2-\left(2y\right)^2=\left(x+1-2y\right)\left(x+1+2y\right)\)
1) \(x-2y=3\Rightarrow\hept{\begin{cases}x=3+2y\\y=\frac{x-3}{2}\end{cases}}\)
\(\Rightarrow A=2x\left(x+2y-3\right)-y\left(6x-3y-10\right)+x-7+\left(x-3y\right)^2\)
\(=2x^2+4xy-6x-6xy+3y^2+10y+x-7+x^2-6xy+9y^2\)
\(=3x^2+12y^2-8xy-5x+10y-7\)
\(=3.\left(3+2y\right)^2+12y^2-8\left(3+2y\right).y-5\left(3+2y\right)+10y-7\)
\(=3\left(9+12y+4y^2\right)+12y^2-8\left(3y+2y^2\right)-15-10y+10y-7\)
\(=27+36y+12y^2+12y^2-24y-16y^2-15-10y+10y-7\)
\(=8y^2+12y+5\)
\(M=\left(x^2-2x+1\right)\left(1+2x\right)-\left(x^2+2x+1\right)\left(1-3x\right)-\left(3-6x\right)\left(x^2+3x+2\right)\)
\(=x^2+2x^3-2x-4x^2+1+2x-x^2+3x^8-2x+6x^2-1+3x-3x^2-9x-6+6x^8\)\(+18x^2+12x=11x^3+17x^2+4x-6\)
Bài 1:
a) (3x-2).(4x+5)-6x.(2x-1) = 12x^2 +15x - 8x -10 - 12x^2 + 6x = 13x - 10
b) (2x-5)^2 - 4.(x+3).(x-3) = 4x^2 - 20x + 25 - 4x^2 + 12x -12x + 36 = -20x + 61
Bài 2:
a)(2x-1)^2-(x+3)^2 = 0
<=> (2x-1-x-3).(2x-1+x+3) =0
<=>(x-4).(3x+2) = 0
<=> x-4 = 0 hoặc 3x+2=0
*x-4=0 => x=4
*3x+2 = 0 => 3x=-2 => x=-2/3
b)x^2(x-3)+12-4x=0 <=> x^2(x-3) - 4(x-3) =0 <=> (x-3).(x-2)(x+2) <=> x-3=0 hoặc x-2=0 hoặc x+2 =0
*x-3=0 => x=3
*x-2=0 =>x=2
*x+2=0 =>x=-2
c) 6x^3 -24x =0 <=> 6x(x^2 -4)=0 <=> 6x(x-2)(x+2)=0 <=> x=0 hoặc x-2 =0 hoặc x+2=0 <=> x=0 hoặc x=2 hoặc x=-2
1) \(2x.\left(x-7\right)-\left(x+3\right)\left(x-2\right)-\left(x+4\right)\left(x-4\right)\)
\(=2x^2-14x-\left(x^2+x-6\right)-\left(x^2-4\right)\)
\(=-15x+10\)
b) \(2x.\left(x+1\right)^2-\left(x-1\right)^3-\left(x-2\right)\left(x^2+2x+4\right)\)
\(=2x.\left(x^2+2x+1\right)-\left(x^3-3x^2+3x-1\right)-\left(x^3-8\right)\)
\(=2x^3+4x^2+2x-x^3+3x^2-3x+1-x^3+8\)
\(=7x^2-x+9\)
c) \(\left(x-5\right)\left(x+5\right)\left(x+2\right)-\left(x+2\right)^3\)
\(=\left(x+2\right).\left[\left(x-5\right)\left(x+5\right)-\left(x+2\right)^2\right]\)
\(=\left(x+2\right).\left(x^2-25-x^2-4x-4\right)\)
\(=\left(x+2\right)\left(-4x-29\right)\)
\(=-4x^2-37x-58\)
d) \(\left(x-3\right)^3+\left(x-5\right)\left(x^2+5x+25\right)-\left(x-1\right)\left(x^2+x+1\right)\)
\(=x^3-9x^2+27x-27+\left(x^3-125\right)-\left(x^3-1\right)\)
\(=x^3-9x^2+27x-151\)
e) \(\left(x-1\right)^3-\left(x-2\right)\left(x^2-2x+4\right)+3x^2+2x\)
\(=x^3-3x^2+3x-1-\left(x^3-8\right)+3x^2+2x\)
\(=5x+7\)
Nhẩm ấy, ko nháp âu
\(2x\left(x-7\right)-\left(x+3\right)\left(x-2\right)-\left(x+4\right)\left(x-4\right)\)
\(=2x^2-14x-\left(x^2-2x+3x-6\right)-\left(x^2-4x+4x-16\right)\)
\(=2x^2-14x-x^2+x-6-x^2+16\)
\(=-13x-10\)
\(2x\left(x+1\right)^2-\left(x-1\right)^3-\left(x-2\right)\left(x^2+2x+4\right)\)
\(=2x\left(x^2+2x+1\right)-\left(x^3-3x^2+3x-1\right)-\left(x-2\right)\left(x+2\right)\)
\(-2x^3+4x^2+2x-x^3+3x^2-3x+1-x^2+4\)
\(=-3x^3+6x^2-x+5\)
\(1)\)
\(a)\)\(A=5-8x-x^2\)
\(A=-\left(x^2+8x+16\right)+21\)
\(A=-\left(x+4\right)^2+21\le21\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x+4\right)^2=0\)
\(\Leftrightarrow\)\(x=-4\)
Vậy GTLN của \(A\) là \(21\) khi \(x=-4\)
\(b)\)\(B=5-x^2+2x-4y^2-4y\)
\(-B=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)-7\)
\(-B=\left(x-1\right)^2+\left(2y+1\right)^2-7\ge-7\)
\(B=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}-\left(x-1\right)^2=0\\-\left(2y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{-1}{2}\end{cases}}}\)
Vậy GTLN của \(B\) là \(7\) khi \(x=1\) và \(y=\frac{-1}{2}\)
Chúc bạn học tốt ~
\(2)\)\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(............\)
\(2A=\left(3^{64}-1\right)\left(3^{64}+1\right)\)
\(2A=3^{128}-1\)
\(A=\frac{2^{128}-1}{3}\)
Chúc bạn học tốt ~
Bài 1: mình ko bik yêu cầu đề bài nên mình ko làm.
Bài 2:
a/ \(\left(2x+5\right)^2=\left(2x\right)^2+2.2x.5+5^2\)
\(=4x^2+20x+25\)
b/ \(\left(3x+4\right)^2=\left(3x\right)^2+2.3x.4+4^2\)
\(=9x^2+24x+16\)
c/\(\left(3x+5y+\frac{1}{2}\right)^2\)
Đối với bình phương của một tổng gồm ba hạng tử, ta có công thức như sau:
(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=a2+b2+c2+2(ab+bc+ac)
\(\left(3x+5y+\frac{1}{2}\right)^2=9x^2+25y^2+\frac{1}{4}+2\left(15x+\frac{3x}{2}+\frac{5y}{2}\right)\)
Bài 3:
a/ A= x2+10x+30
A= x2+2.5x+25+5
A= x2+2.5.x+52+5
A=(x+5)2+5
Ta có (x+5)2 luôn luôn > hoặc = 0
=>(x+5)2+5 luôn luôn lớn hơn 0 (vì 5>0)
=> A luôn dương.
b/ \(B=3x^2+6x+19\\ B=\left(\sqrt{3x}\right)^2+2x.\sqrt{3}.\sqrt{3}+3+16\)
\(B=\left(\sqrt{3x}+\sqrt{3}\right)^2+16\)
(Tương tự như câu A)
Ta có \(\left(\sqrt{3x}+\sqrt{3}\right)^2\)luôn luôn > hoặc = 0
=> \(\left(\sqrt{3x}+\sqrt{3}\right)^2+16\) luôn luôn > 0 (vì 16 > 0)
=> B luôn dương.
c/ \(C=4x^2+10x+32\\ C=\left(2x\right)^2+2.2x.\frac{5}{2}+\frac{25}{4}+\frac{103}{4}\\C=\left(2x+\frac{5}{2}\right)^2+\frac{103}{4} \)
(Chứng minh tương tự câu a, b)
Chúc bạn học tốt!!
mk giúp bạn bài 3 còn bài 1, 2 tự làm nha
a , A = x2 + 10x +30
= (x2 + 2 . 5 . x +52 ) +5
= (x+5)2 + 5
Vì (x+5)2 >= 0 (luôn đúng)
=> (x+5)2 + 5 luôn luôn dương
\((2x+1)^2+(2x-1)^2-2(x-3)^2\\=4x^2+4x+1+4x^2-4x+1-2(x^2-6x+9)\\=8x^2+2-2x^2+12x-18\\=6x^2+12x-16\)