K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2016

-7 tick di mình làm cho

8 tháng 1 2016

giá trị nhỏ nhất bằng 7 khi x=0 

x4  lớn hơn bằng 0 

2.x2 lớn hơn = 0 

=> x +2.x2  -7 lơn hơn bằng -7 => giá trị nhỏ nhất = -7 khi x = 0

26 tháng 12 2015

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{7x+2}{5x+7}=\frac{7x-1}{5x+1}=\frac{\left(7x+2\right)-\left(7x-1\right)}{\left(5x+7\right)-\left(5x+1\right)}=\frac{3}{6}=\frac{1}{2}\)

=> 2(7x + 2) = 5x + 7

14x + 4 = 5x + 7

14x - 5x = 7 - 4

9x = 3

x = 3:9

x = 0,(3)

AH
Akai Haruma
Giáo viên
25 tháng 8 2024

Lời giải:

$A=|x-2|+|y+3|=|2+y-2|+|y+3|=|y|+|y+3|$

$=|-y|+|y+3|\geq |-y+y+3|=3$

Vậy $A_{\min}=3$

Giá trị này đạt được khi $(-y)(y+3)\geq 0$

$\Leftrightarrow -3\leq y\leq 0$

 

25 tháng 3 2020

a) Sửa: C=(x+2)2+\(\left(y-\frac{1}{5}\right)^2\)+10

Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(y-\frac{1}{5}\right)^2\ge0\forall y\end{cases}}\)

\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2+10\ge10\forall x;y\)

hay C \(\ge10\). Dấu "=" \(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-\frac{1}{5}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+2=0\\y-\frac{1}{5}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}}}\)

27 tháng 3 2020
Cam on ban
22 tháng 10 2018

Áp dụng bất đẳng thức GTTĐ \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có :

\(A=\left|x+1\right|+\left|y-2\right|\ge\left|x+1+y-2\right|=\left|x+y-1\right|\)

Thay x+y=5 vào A ta có :

\(A\ge\left|5-1\right|=\left|4\right|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+1\ge0\\y-2\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\y\ge2\end{cases}}}\)

Vậy Amin = 4 <=> x >=-1 và y >=2

23 tháng 10 2018

\(A=\left|x+1\right|+\left|y-2\right|\ge\left|x+1+y-2\right|=\left|4\right|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}x+1\ge0\\y-2\ge0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\ge-1\\y\ge2\end{cases}}}\)

Vậy:\(A_{Min}=4\Leftrightarrow\hept{\begin{cases}x\ge-1\\y\ge2\end{cases}}\)