K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2019

a)\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2010}=0\)

\(\Leftrightarrow\left(3x-5\right)^{2006}=0\Leftrightarrow3x-5=0\Leftrightarrow x=\frac{5}{3}\)

hay\(\left(y^2-1\right)^{2008}=0\Leftrightarrow y^2-1=0\Leftrightarrow y^2=1\Leftrightarrow y=\pm1\)

hay\(\left(x-z\right)^{2010}=0\Leftrightarrow x-z=0\Leftrightarrow\frac{5}{3}-z=0\Leftrightarrow z=\frac{5}{3}\)

V...\(x=\frac{5}{3},y=\pm1,z=\frac{5}{3}\)

b)Ta co:\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{x^2+y^2+z^2}{4+9+16}=\frac{116}{29}=4\)

Suy ra:\(\frac{x}{2}=4\Leftrightarrow x=8\)

            \(\frac{y}{3}=4\Leftrightarrow y=12\)

             \(\frac{z}{4}=4\Leftrightarrow z=16\)

V...

15 tháng 10 2018

Ta có : \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

=> \(\frac{y+z}{x}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)

=> \(\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y}{z}=\frac{y+z+x+z+x+y}{x+y+z}=2\)

+) \(\frac{y+z}{x}=2\)

=> y+z=2x

+) \(\frac{x+z}{y}=2\)

=>x+z=2y

+)\(\frac{x+y}{z}=2\)

=> x+y=2z 

Mà B= ( 1+x/y)(1+y/z) (1+z/x)

      B= \(\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}\)

      B= \(\frac{2z.2x.2y}{xyz}\)

      B= 8

~ Chúc bạn học tốt ~

Tích và kết bạn với mình nha!

15 tháng 10 2018

Ta có: \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)

Lại có:

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(\Leftrightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)

\(\Leftrightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)

(+) Xét x + y + z = 0\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\z+x=-y\end{cases}}\)

Thay vào ta có: \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=\frac{-xyz}{xyz}=-1\)

(+) Xét x + y + z \(\ne\) 0

Tương tự như trên ta có: \(\hept{\begin{cases}x+y=2z\\y+z=2x\\z+x=2y\end{cases}}\)

Thay vào ta có: \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)

Vậy \(\hept{\begin{cases}B=-1\Leftrightarrow x+y+z=0\\B=8\Leftrightarrow x+y=y+z=z+x\Leftrightarrow x=y=z\end{cases}}\)

A=\(\left(\frac{1}{4}-1\right).\left(\frac{1}{9}-1\right).\left(\frac{1}{16}-1\right).............\left(\frac{1}{9801}-1\right).\left(\frac{1}{10000}-1\right)\)

A=\(\left(\frac{1-4}{4}\right).\left(\frac{1-9}{9}\right).\left(\frac{1-16}{16}\right).............\left(\frac{1-9801}{9801}\right).\left(\frac{1-10000}{10000}\right)\)

A=\(\frac{-3}{4}.\frac{-8}{9}.\frac{-15}{16}.....................\frac{-9800}{9801}.\frac{-9999}{10000}\)

A=\(\frac{-1.3}{2^2}.\frac{-2.4}{3^2}.\frac{-3.5}{4^2}.....................\frac{-98.100}{99^2}.\frac{-99.101}{100^2}\)

A=\(\frac{\left[\left(-1\right).\left(-2\right).\left(-3\right)....................\left(-98\right).\left(-99\right)\right].\left(3.4.5............100.101\right)}{\left(2.3.4.........99.100\right).\left(2.3.4...............99.100\right)}\)

A=\(\frac{1.101}{100.2}\)=\(\frac{101}{200}\)

2

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.................+\frac{2}{x.\left(x+1\right)}=\frac{2015}{2017}\)

\(\frac{1}{3.2}+\frac{1}{6.2}+\frac{1}{10.2}+.................+\frac{2}{2.x.\left(x+1\right)}=\frac{1}{2}.\frac{2015}{2017}\)

\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+.................+\frac{1}{x.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+..................+\frac{1}{x.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+..............+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{x+1}{2.\left(x+1\right)}-\frac{2}{2.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{\left(x+1\right)-2}{2.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{x-1}{2.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

=>\(\frac{x-1}{x+1}=\frac{2015}{2017}.\frac{1}{2}:\frac{1}{2}\)

\(\frac{x-1}{x+1}=\frac{2015}{2017}\)

=>x+1=2017

=>x=2018-1

=>x=2016

Vậy x=2016

Còn bài 3 em ko biết làm em ms lớp 6

Chúc anh học tốt

23 tháng 2 2019

a, P + 3x\(^{^2}\) - 4xy = 6y\(^{^2}\) - 9xy + x\(^2\)

=> P = 6y\(^2\)- 9xy + x\(^2\)+ 4xy - 3x\(^2\)= 6y\(^2\)- 5xy - 2x\(^2\)

=> P = 6y\(^2\) - 5xy - 2x\(^2\)

b, 

4y\(^2\) - 8xy - P = 5x\(^2\) - 12xy + 4y\(^2\)

=> P = 4y\(^2\) - 8xy - 5x\(^2\) + 12xy - 4y\(^2\) = 4xy - 5x\(^2\)

=> P = 4xy - 5x\(^2\)

c,

P - ( x\(^2\) - 2y\(^2\) + 3z\(^2\) ) + 3x\(^2\) - y\(^2\) + 2z\(^2\)= 2x\(^2\) - 3y\(^2\) -z\(^2\)

= P + 2x\(^2\) + y\(^2\) - z\(^2\) = 2x\(^2\) - 3y\(^2\) - z\(^2\)

=> P = 2x\(^2\) - 3y\(^2\) - z\(^2\) - 2x\(^2\) - y\(^2\) + z\(^2\)

=> P = -2y\(^2\)

2 tháng 12 2019

Nhanh lên nhé mình xin các bạn đấy