Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C K M N H O
1) Dễ thấy ^CHN = ^CKN = 900 => Bốn điêm C,H,K,N cùng thuộc đường tròn đường kính CN
Hay tứ giác CNKH nội tiếp đường tròn (CN) (đpcm).
2) Sđ(BCnhỏ = 1200 => ^BOC = 1200 => ^BNC = 1/2.Sđ(BCnhỏ = 1/2.^BOC = 600
Vì tứ giác CNKH nội tiếp (cmt) nên ^KHC = 1800 - ^CNK = 1800 - ^BNC = 1200.
3) Hệ thức cần chứng minh tương đương với:
2KN.MN = AM2 - AN2 - MN2 <=> 2KN.MN = MN.MB - MN2 - AN2 (Vì AM2 = MN.MB)
<=> 2KN.MN = MN.BN - AN2 <=> AN2 = MN(BN - 2KN)
<=> AK2 + KN2 = MN(BK - KN) (ĐL Pytagoras) <=> AK2 + KN.KM = MN.BK
<=> AM2 - (MK2 - KN.KM) = MN.BK (ĐL Pytagoras) <=> AM2 - MK.MN = MN.BK
<=> AM2 = MN(BK + MK) = MN.MB <=> AM2 = AM2 (Hệ thức lượng đường tròn) (Luôn đúng)
Do đó hệ thức ban đầu đúng. Vậy KN.MN = 1/2.(AM2 - AN2 - MN2) (đpcm).
Có \(\hept{\begin{cases}HK\perp KC\\HI\perp IC\end{cases}\Rightarrow\widehat{HKC}+\widehat{HIC}=90^o+90^o=180^o}\)
=> tứ giác CIHK nội tiếp
Do tứ giác CIHK nội tiếp nên \(45^o=\widehat{ICK}-\widehat{BHI}=\frac{1}{2}sđ\widebat{BM}+\frac{1}{2}sđ\widebat{AN}\)
\(\Rightarrow sđ\widebat{BM}+sđ\widebat{AN}=90^o\)
=> \(sđ\widebat{MN}=sđ\widebat{AB}+\left(sđ\widebat{BM}+sđ\widebat{AN}\right)\)hay MN là đường kính của (O)
=90o+90o=180o
Do MN là đường kính của (O) nên MA _|_ DN, NB_|_ DM
Do đó, H là trực tâm \(\Delta\)DMN hay DH _|_ MN
Do I;K cùng nhìn AB dưới góc 90o nên tứ giác ABIK nội tiếp
=> \(\widehat{CAI}=\widehat{CBK}\)=> \(sđ\widebat{CM}=sđ\widebat{CN}\)
=> C là điểm chính giữa cung MN => CO _|_ MN
Vì AC>BC nên \(\Delta\)ABC không cân tại C
Do đó: C;O;H không thẳng hàng
=> CO//DH
Tự vẽ hình nhé!
a, MN;MP là 2 tiếp tuyến của đường tròn (O) (gt)
\(\Rightarrow\widehat{ONM}=\widehat{OPM}=90^0\Rightarrow\) Tứ giác MNOP nội tiếp ngược
\(\Rightarrow\widehat{NMO}=\widehat{NPO}\)( hai góc nội tiếp cùng chắn chung NO)
b, Gọi C là trung điểm dây AB ta có C cố định
(d) không qua O nên \(OC\perp AB\)
\(\widehat{OCM}=\widehat{OMN}=\widehat{OPM}=90^0\)
\(\Rightarrow\) C ; N ; P thuộc đường tròn đường kính OM
\(\Rightarrow\) C ; N ; P ; O ; M cùng thuộc một đường tròn
Mà O và C cố định
Do đó đường tròn ngoại tiếp tam giác MNP đi qua 2 điểm cố định O và C khi M lưu động trên đường thẳng (d)
c, Tứ giác MNOP là hình vuông
\(\Leftrightarrow\) Hình thoi MNOP có \(\widehat{ONM}=90^0\)
\(\Leftrightarrow\) Tứ giác MNOP có MN = ON = OP = PM và \(\widehat{ONM}=90^0\)
\(\Leftrightarrow\)Tam giác OMN vuông cân tại N \(\Leftrightarrow\) \(OM=ON\sqrt{2}=R\sqrt{2}\)
\(\Leftrightarrow\) M là giao điểm của đường tròn tâm O bán kính \(R\sqrt{2}\) và đường thẳng (d)
d, từ nghĩ đã...
\(\Leftrightarrow\) MN = ON = R ; \(\widehat{ONM}=90^0\)
cái dòng cuối cùng của ý d là dòng thứ 4 của ý c nhé, bị nhầm đó
d, Làm tiếp:
Giả sử đoạn thẳng OM cắt đường tròn (O) tại I'
OM là tia phân giác \(\widehat{NOP}\)( vì MN;MP là 2 tiếp tuyến của (O))
\(\Rightarrow\widehat{NOM}=\widehat{POM}\Rightarrow\widebat{NI'}=\widebat{PI'}\)
\(sđ\widehat{NPI'}=\frac{1}{2}sđ\widebat{NI'}\) ; \(sđ\widehat{MPI'}=\frac{1}{2}sđ\widehat{PI'}\)
Do đó \(\widehat{NPI'}=\widehat{MPI'}\Rightarrow\) PI' là tia phân giác \(\widehat{MPN}\)
\(\Delta MPN\)có MI' là tia phân giác \(\widehat{NMP}\)( vì MN và MP là 2 tiếp tuyến ) và PI' là tia phân giác \(\widehat{MPN}\)nên I' là tâm đường tròn nội tiếp tam giác MNP
Do đó \(I'\equiv I\)mà I' thuộc đường tròn (O;R)
Mặt khác : O , I cùng thuộc nửa mặt phẳng bờ d
Do đó I lưu động trên cung lớn AB của đưởng tròn tâm O bán kính R
A B C D E x y
a) Xét tứ giác BEDC có:
\(\widehat{BEC}=\widehat{BDC}\)
\(\widehat{BEC}\)và \(\widehat{BDC}\) cùng nhìn cạnh BC
=> BEDC là tứ giác nội tiếp
b) Do BEDC là tứ giác nội tiếp nên: \(\widehat{BED}+\widehat{BCD}=180^o\)
Mà \(\widehat{BED}+\widehat{DEA}=180^o\Rightarrow\widehat{BCD}=\widehat{DEA}\)(*)
Mặt khác ta có:
\(\widehat{xAB}=\widehat{ACB}\)(cùng chắn cung AB)
hay \(\widehat{xAE}=\widehat{BCD}\)(**)
Từ (*) và (**) suy ra \(\widehat{DEA}=\widehat{xAE}\)
=> xy song song với ED (2 góc sole trong) (đpcm)
c) Do tứ giác BEDC là tứ giác nội tiếp
Mà \(\widehat{EBD}\)và \(\widehat{ECD}\)cùng nhìn cạnh ED
=> \(\widehat{EBD}=\widehat{ECD}\)(đpcm)
d) \(\widehat{BOC}=2\widehat{BAC}=120^o\)
DIện tích hình quạt BOC là: \(S_{qBOC}=\frac{\pi.R.n}{180}=\frac{\pi.2.120}{180}=\frac{4}{3}\pi\left(cm^2\right)\)
\(BC^2=OB^2+OC^2-2.OB.OC.cos120^o=12\Rightarrow BC=2\sqrt{3}\)
OH là đường cao, tam giác BOC cân tại O => BH=1/2.BC=\(\sqrt{3}\left(cm\right)\)
\(OH^2=OB^2-BH^2=2^2-3=1\Rightarrow OH=1\left(cm\right)\)
Diện tích tam giác BOC là: \(S_{\Delta BOC}=\frac{1}{2}.OH.BC=\frac{1}{2}.1.2\sqrt{3}=\sqrt{3}\left(cm^2\right)\)
=> Diện tích hình viên phân là: \(S_{vp}=S_{qBOC}-S_{\Delta BOC}=\frac{4}{3}\pi-\sqrt{3}\left(cm^2\right)\)
c) OM cắt CD tại F
Ta có OK.OM=OC2=R2OK.OM=OC2=R2
ΔOHM∼ΔOKF⇒OHOK=OMOFΔOHM∼ΔOKF⇒OHOK=OMOF
⇒OF=OK.OMOH=R2OH⇒OF=OK.OMOH=R2OH (không đổi)
mà OF nằm trên đường cố định nên F là điểm cố định khi M thay đổ
c)OM cắt CD tại F
Ta có \(OK.OM=OC^2=R^2\)
\(\Delta OHM~\Delta OKF\Rightarrow\frac{OH}{OK}=\frac{OM}{OF}\)
\(OF=\frac{OK.OM}{OH}=\frac{R^2}{OH}\)( không đổi)
mà OF nằm trên đường cố định nên F là điểm cố định khi M thay đổi