K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2017

Bài giải:

Căn cứ vào tính chất đưởng thẳng song song với một đường thẳng cho trước ta kết luận là vì điểm C cách mép gỗ AB một khoảng bằng 10cm nên đầu chì C vạch nên đường thằng song song với AB và cách AB một khoảng 10cm.

21 tháng 4 2017

Căn cứ vào tính chất đưởng thẳng song song với một đường thẳng cho trước ta kết luận là vì điểm C cách mép gỗ AB một khoảng bằng 10cm nên đầu chì C vạch nên đường thằng song song với AB và cách AB một khoảng 10cm.

29 tháng 6 2017

- Căn cứ vào tính chất đường thẳng song song với một đường thẳng cho trước.

- Vì điểm C cách mép gỗ AB một khoảng không đổi bằng 10cm nên khi tay di chuyển thì đầu bút chì C vạch nên một đường thẳng song song với AB và cách AB một khoảng 10cm.

22 tháng 2 2024

Để chứng minh rằng MN=PQ, ta sẽ sử dụng tính chất của các tam giác đồng dạng.

Gọi X là giao điểm của MQNP.

Ta có các tam giác đồng dạng sau:

MQXNPX (do MQ song song với NP, XM song song với PN và góc MXQPXN là góc đồng phía nội tiếp giữa hai đoạn thẳng MQNP).XMDXCB (do MQ song song với CBMD song song với BX).XNCXAD (do NP song song với ADNC song song với XA).

Từ tính chất của các tam giác đồng dạng, ta có thể viết các tỉ số tương ứng:

(1)PNMQ​=PXQX​(1)(2)CBMD​=XBXM​(2)(3)ADNC​=AXNX​(3)

Như vậy, từ các phương trình trên, ta có thể suy ra:

(4)PNMQ​=CBMD​⋅ADNC​(4)

Vậy nên ta thấy rằng PNMQ​=CBMD​⋅ADNC​.

Từ (4), ta thấy rằng MQ=PN khi và chỉ khi MD=NC, CB=AD, tức là ABCD là hình vuông.

Do đó, ta đã chứng minh được rằng MN=PQ khi và chỉ khi ABCD là hình vuông.

mong là đúng:))hehehehehehe

    

5 tháng 5 2017

Xét tam giác ABC ta có:

ON // AB (gt)

=> \(\dfrac{ON}{AB}=\dfrac{CO}{CA}\left(1\right)\)\(\dfrac{ON}{AB}=\dfrac{CO}{CA}\left(2\right)\)

Xét tam giác ABD ta có:

OM // AB (gt)

=> \(\dfrac{OM}{AB}=\dfrac{DO}{DB}\left(2\right)\)

Vì AB // CD nên \(\dfrac{DO}{DB}=\dfrac{CO}{CA}\left(3\right)\)

Từ (1), (2) và (3) suy ra:

\(\dfrac{ON}{AB}=\dfrac{OM}{AB}=>OM=ON\)

Vậy OM = ON.

22 tháng 4 2017

a) Những đường thẳng song song với mặt phẳng (EFGH) là: AB; BC; CD; DA.

b) Đường thẳn AB song song với những mặt phẳng: (CDHG); (EFGH); (DCFE)

c) Đường thẳng AD song song với những đường thẳng: BC, FG, EH

22 tháng 4 2017

a) Những đường thẳng song song với mặt phẳng (EFGH) là: AB; BC; CD; DA.

b) Đường thẳn AB song song với những mặt phẳng: (CDHG); (EFGH); (DCFE)

c) Đường thẳng AD song song với những đường thẳng: BC, FG, EH

21 tháng 4 2017

Bài giải:

Ta có: EB // DD' // CC' và AE = CD = DE.

Nên theo định lí về các đường thẳng song song cách đều ta suy ra

AC' = C'D' = D'B

Vậy đoạn thẳng AB bị chia ra ba phần bằng nhau.

28 tháng 10 2017

Xét tứ giác C'CEB có: CC'//EB (gt)

=> C'CEB là hình thang

Xét \(\Delta\)ADD' có : AC=CD (gt)

CC'=Đ' (gt)

=>AC'=C'D' (định lí 1) (1)

Xét hình thang CC'EB có: CD=DE (gt)

DD'//EB

=>C'D'=D'B(định lí 1) (2)

Từ (1) và (2) =>AC'=C'D'=D'B

Vậy đoạn thẳng AB được chia thành 3 phần bằng nhau.

21 tháng 4 2017

Bài giải:

Tứ giác BCDE có:

BC // DE (vì cùng vuông góc với CD)

BC = DE

nên BCDE là hình chữ nhật

Do đó = 900 , = 900

Suy ra AB và EF cùng nằm trên một đường thẳn

5 tháng 5 2017

a) Theo đề bài ta có:

\(\dfrac{AD}{DC}=\dfrac{BA}{BC}=\dfrac{15}{10}=\dfrac{3}{2}\)

\(\dfrac{AD}{AD+DC}=\dfrac{15}{15+10}hay\dfrac{AD}{AC}=\dfrac{15}{25}\)

=> AD = \(\dfrac{15.AC}{25}=\dfrac{15.15}{25}=9\left(cm\right)\)

DC = AC - AD = 15 - 9 = 6 (cm)

Vậy AD = 9cm; DC = 6cm.

b) Vì BD \(\perp\) BE nên BE là đường phân giác của góc ngoài tại đỉnh B.

Áp dụng tính chất đường phân giác của góc ngoài ta có:

\(\dfrac{EC}{EA}=\dfrac{EC}{EC+AC}=\dfrac{BC}{BA}\)

hay \(\dfrac{EC}{EC+15}=\dfrac{10}{15}=\dfrac{2}{3}\)

=> EC = 30 (cm)

Vậy EC = 30cm.

24 tháng 4 2017

a) Các cạnh song song với cạnh AD là: EH, BC, FG.

b) Cạnh song song với AB là EF

c) Các đường thẳng song song với mặt phẳng (EFGH) là : AD, BC, AB, CD.

d) Các đường thẳng song song với mặt phẳng (DCGH): không có