Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1
5x2 + 10y2 - 6xy - 4x - 2y + 3
= ( x2 - 6xy + 9y2 ) + ( 4x2 - 4x + 1 ) + ( y2 - 2y + 1 ) + 1
= ( x - 3y )2 + ( 2x - 1 )2 + ( y - 1 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )
Câu 2
a) A = 2011.2013 = ( 2012 - 1 )( 2012 + 1 ) = 20122 - 1 < 20122
=> A < B
B = 3128 - 1
= ( 364 - 1 )( 364 + 1 )
= ( 332 - 1 )( 332 + 1 )( 364 + 1 )
= ( 316 - 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 )
= ( 34 - 1 )( 34 + 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 )
= ( 32 - 1 )( 32 + 1 )( 34 + 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 )
= ( 3 - 1 )( 3 + 1 )( 32 + 1 )( 34 + 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 )
= 8( 32 + 1 )( 34 + 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 ) > 4( 32 + 1 )( 34 + 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 )
=> B > A
Bài 1:
a) \(x^3-5x^2+8x-4\)
\(=x^3-4x^2+4x-x^2+4x-4\) \(=x\left(x^2-4x+4\right)-\left(x^2-4x+4\right)\)\(=\left(x-1\right)\left(x-2\right)^2\)
b) Ta có: \(\frac{A}{M}=\frac{10x^2-7x-5}{2x-3}=5x+4+\frac{7}{2x-3}\)
Với \(x\in Z\)thì \(A⋮M\)khi \(\frac{7}{2x-3}\in Z\)\(\Rightarrow7⋮\left(2x-3\right)\)\(\Rightarrow2x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow=\left\{1;5;\pm2\right\}\)thì khi đó \(A⋮M\)
Các bài làm này có đúng ko ạ, ai đó duyệt giúp em, em cảm ơn.
Bài 1:
a)x3-5x2+8x-4=x3-4x2+4x-x2+4x-4
=x(x2-4x-4)-(x2-4x+4)
=(x-1) (x-2)2
b)Xét:
\(\frac{a}{b}-\frac{10x^2-7x-5}{2x-3}\)
=\(5x+4+\frac{7}{2x-3}\)
Với x thuộc Z thì A /\ B khi \(\frac{7}{2x-3}\) thuộc Z => 7 /\ (2x-3)
Mà Ư(7)={-1;1;-7;7} => x=5;-2;2;1 thì A /\ B
c)Biến đổi \(\frac{x}{y^3-1}-\frac{x}{x^3-1}=\frac{x^4-x-y^4+y}{\left(y^3-1\right)\left(x^3-1\right)}\)
=\(\frac{\left(x^4-y^4\right)\left(x-y\right)}{xy\left(y^2+y+1\right)\left(x^2+x+1\right)}\)(do x+y=1=>y-1=-x và x-1=-y)
=\(\frac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)-\left(x-y\right)}{xy\left[x^2y^2+y^2x+y^2+xy^2+xy+y+x^2+x+1\right]}\)
=\(\frac{\left(x-y\right)\left(x^2+y^2-1\right)}{xy\left[x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+2\right]}\)
=\(\frac{\left(x-y\right)\left(x^2-x+y^2-y\right)}{xy\left[x^2y^2+\left(x+y\right)^2+2\right]}=\frac{\left(x-y\right)\left[x\left(x-1\right)+y\left(y-1\right)\right]}{xy\left(x^2y^2+3\right)}\)
=\(\frac{\left(x-y\right)\left[x\left(-y\right)+y\left(-x\right)\right]}{xy\left(x^2y^2+3\right)}=\frac{\left(x-y\right)\left(-2xy\right)}{xy\left(x^2y^2+3\right)}\)
=\(\frac{-2\left(x-y\right)}{x^2y^2+3}\)Suy ra điều phải chứng minh
Bài 2 )
a)(x2+x)2+4(x2+x)=12 đặt y=x2+x
y2+4y-12=0 <=>y2+6y-2y-12=0
<=>(y+6)(y-2)=0 <=> y=-6;y=2
>x2+x=-6 vô nghiệm vì x2+x+6 > 0 với mọi x
>x2+x=2 <=> x2+x-2=0 <=> x2+2x-x-2=0
<=>x(x+2)-(x+2)=0 <=>(x+2)(x-1) <=> x=-2;x-1
Vậy nghiệm của phương trình x=-2;x=1
b)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}+\frac{x+4}{2005}+\frac{x+5}{2004}\)\(+\frac{x+6}{2003}\)
=\(\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)+\left(\frac{x+4}{2005}+1\right)\)\(+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)
<=>\(\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}\)\(+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)
<=>\(\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}\)\(-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x+2009}{2003}=0\)
Nhờ OLM xét giùm em vs ạ !
\(1)\)
\(a)\)\(A=5-8x-x^2\)
\(A=-\left(x^2+8x+16\right)+21\)
\(A=-\left(x+4\right)^2+21\le21\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x+4\right)^2=0\)
\(\Leftrightarrow\)\(x=-4\)
Vậy GTLN của \(A\) là \(21\) khi \(x=-4\)
\(b)\)\(B=5-x^2+2x-4y^2-4y\)
\(-B=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)-7\)
\(-B=\left(x-1\right)^2+\left(2y+1\right)^2-7\ge-7\)
\(B=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}-\left(x-1\right)^2=0\\-\left(2y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{-1}{2}\end{cases}}}\)
Vậy GTLN của \(B\) là \(7\) khi \(x=1\) và \(y=\frac{-1}{2}\)
Chúc bạn học tốt ~
\(2)\)\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(............\)
\(2A=\left(3^{64}-1\right)\left(3^{64}+1\right)\)
\(2A=3^{128}-1\)
\(A=\frac{2^{128}-1}{3}\)
Chúc bạn học tốt ~
a)(x2-x+1)(x2-x+2)-12 (1)
Đặt x2-x+1=a thì (1) <=> a(a+1)-12=a2+a-12
=(a2-3a)+(4a-12)
=a(a-3)+4(a-3)
=(a-3)(a+4)
=(x2-x+1-3)(x2-x+1+4)
=(x2-x-2)(x2-x+5)
Vậy......
b) Đặt x2+x=a thì a2 + 4a-12 = (a2-2a)+(6a-12)
= a(a-2) + 6(a-2)
= (a+6)(a-2)
= (x2+x+6)(x2+x-2)
Vậy....
a) Ta có x2 >0 với mọi x thuộc Z
=> x=2 và x=-3 là nghiệm của BĐT đã cho
b) Vì x2 >0 với mọi giá trị x
=> mọi giá trị ẩn x đều là nghiệm của bpt đã cho
Câu hỏi của Cr746 - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo !
Đang câu hỏi thì bớt make color nha :)))
(x - 1)3 - x(x + 1)2 = 5x(2 - x) - 11(x + 2)
<=> -5x2 + 2x - 1 = -5x2 - x - 22
<=> 2x - 1 = -x - 22
<=> 2x - 1 + x = -22
<=> 3x - 1 = -22
<=> 3x = -22 + 1
<=> 3x = -21
<=> x = -7
\(a,x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
\(b,-x^2+2x-4=-\left(x^2-2x+1+3\right)\)
\(=-\left[\left(x-1\right)^2+3\right]< 0\forall x\)
x4 - x + 1/2 = x4 - x2 +1/4 + x2 - x + 1/4 = (x4 - x2 +1/4) + (x2 - x - 1/4 +1/2) = (x2-1/2)2 + (x-1/2)2
ta thấy rằng (x2-1/2)2 và (x-1/2)2 luôn lớn hơn hoặc bằng 0 nhỏ nhất là bằng 0 => (x2-1/2)2 + (x-1/2)2 lớn hơn hoặc bằng 0
mà (x2-1/2)2 và (x-1/2)2 không thể đồng thời bằng 0
Suy ra (x2-1/2)2 + (x-1/2)2 > 0 với mọi x
cmr voi moi x thi x^4>x-1/2