K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2016

Gọi 2 số đó là:n+1 và n+3

Đặt UCLN(n+1,n+3)=d

Ta có:n+1 chia hết cho d

n+3 chia hết cho d

=>(n+3)-(n+1) chia hết cho d

=>2 chia hết cho d

=>d\(\in\)Ư(2)={1,2}

Mà n+1 và n+3 là số lẻ nên không chia hết cho 2

=>d=1

Vậy hai số lẻ liên tiếp bao giờ cũng nguyên tố cùng nhau(đpcm)

 

4 tháng 2 2016

ta lấy 1 vd đơn giản : 1 và 3 UwCLN(1;3)=1 

đó chứng minh duoc roi do

4 tháng 4 2015

a)Gọi 2 số lẻ liên tiếp là:n và n+2;ƯCLN(n;n+2)=d

=>n chia hết cho d và n+2 chia hết cho d

=>(n+2)-n chia hết cho d

=>2 chia hết cho d

=>d thuộc Ư(2)={1;2}

Mà n và n+2 là số lẻ =>ƯCLN(n;n+1)=1

=> điều phải chứng minh

 

4 tháng 4 2015

b)

Ta có:1/2-1/4+1/8-1/16+1/32-1/64=(1/2-1/4)+(1/8-1/16)+(1/32-1/64)

=(2/4-1/4)+(2/16-1/16)+(2/64-1/64)

=1/4+1/16+1/64

=16/64+4/64+1/64

=21/64=63/192

Ta có:1/3=64/192

Mà63/192<64/192

=>điều phải chứng minh

1 tháng 3 2018

2 số lẻ liên tiếp có dạng 2n + 1 và 2n + 3( n \(\in\) N )

Gọi D là ước số chung của chúng.Ta có 2n + 1 chia hết cho D và 3n + 3 chia hết cho D

Nên 2n + 3 - ( 2n+1) chia hết D hay 2 chia hết cho D

Nhưng D ko thể = 2 vì D là ước chung của 2 số lẻ .

Vậy D = 1 tức là 2 số lẻ liên tiếp bao giờ cũng nguyên tố cùng nhau

1 tháng 3 2018

Gọi 2 số lẻ liên tiếp là 2k+1;2k+3 ( k thuộc N )

Gọi ƯCLN (2k+1;2k+3) = d ( d thuộc N sao )

=> 2k+1 và 2k+3 đều chia hết cho d

=> 2k+3-(2k+1) chia hết cho d

=> 2 chia hết cho d

=> d = 1 hoặc d = 2 ( vì d thuộc N sao )

Mà 2k+1 lẻ nên d lẻ => d = 1

=> ƯCLN (2k+1;2k+3) = 1

=> ĐPCM

Tk mk nha

17 tháng 4 2017

Gọi d là ước nguyên tố của n và n+2.

theo bài ra, ta có: n chia hết cho d

                          n+2 chia hết cho d

    Suy ra n+2-n chia hết cho d

                    2 chia hết cho d

Suy ra d thuộc ước của 2={1;2}

Vì n và n+2 là số lè nên ko chia hết cho 2.

Suy ra d=1.

Vậy hai số lẻ liên tiếp là hai số nguyên tố cùng nhau.

Nhớ ks nha. Bài này mình làm rồi. Đúng 100% luôn đó.

                         ^.^

17 tháng 4 2017

vì các số lẻ liên tiếp k chia hết cho số nào cả 

28 tháng 2 2015

2 số lẻ liên tiếp có dạng 2n + 1 và 2n + 3( n \(\in\) N )

Gọi D là ước số chung của chúng.Ta có 2n + 1 chia hết cho D và 3n + 3 chia hết cho D

Nên 2n + 3 - ( 2n+1) chia hết D hay 2 chia hết cho D

Nhưng D ko thể = 2 vì D là ước chung của 2 số lẻ .

Vậy D = 1 tức là 2 số lẻ liên tiếp bao giờ cũng nguyên tố cùng nhau!

12 tháng 1 2021

Gọi 2 số lẻ liên tiếp là 2k+1;2k+3

Gọi ƯC(2k+1;2k+3)=d

=> \(\hept{\begin{cases}2k+1⋮d\\2k+3⋮d\end{cases}}\)

=> (2k+3)-(2k+1)\(⋮\)d

=> 2\(⋮\)d

=> d=1;d=2

Mà 2k+1 và 2k+3 là 2 số lẻ

=> 2k+1 và 2k+3 ko chia hết c ho 2

=> d=1

Vậy.......

31 tháng 1 2016

Thằng ngu có khi biết

1 tháng 2 2016

c)2 số lẻ liên tiếp có dạng 2n + 1 và 2n + 3( n \(\in\) N)

Gọi D là ước số chung của chúng.Ta có 2n + 1 chia hết cho D và 3n + 3 chia hết cho D

Nên 2n + 3 - ( 2n+1) chia hết D hay 2 chia hết cho D

Nhưng D ko thể = 2 vì D là ước chung của 2 số lẻ .

Vậy D = 1 tức là 2 số lẻ liên tiếp bao giờ cũng nguyên tố cùng nhau! (đpcm)

d)

N = abcabc = abc x 1001 = abc x (7 x 11 x 13)

=> abcabc chia hết cho 7, cho 11 và cho 13 (đpcm)

8 tháng 11 2015

1)Gọi 2 số tự nhiên liên tiếp là n và n+1

Đặt ƯCLN(n,n+1)=d

Ta có: n chia hết cho d

n+1 chia hết cho d

=>n+1-n chia hết cho d

=>1 chia hết cho d

=>d=1

=>ƯCLN(n,n+1) =1

=>n và n+1 là 2 số nguyên tố cùng nhau

2)Gọi ƯCLN(2n+5,3n+7)=d

Ta có: 2n+5 chia hết cho d=>3.(2n+5) chia hết cho d=>6n+15 chia hết cho d

3n+7 chia hết cho d=>2.(3n+7) chia hết cho d=>6n+14 chia hết cho d

=>6n+15-(6n+14) chia hết cho d

=>1 chia hết cho d

=>d=1

=>ƯCLN(2n+5,3n+7)=1

=>2n+5 và 3n+7 là 2 số nguyên tố cùng nhau

8 tháng 11 2015

a) 

Gọi 2 số tự nhiên liên tiếp là n; n+1 

Gọi ƯCLN ( n;n+1) la d 

=> n chia hết cho d; n+1 chia hết cho d      

=> n+1-n chia hết cho d  

=> 1 chia hết cho d 

=> d =1

=>  ƯCLN ( n;n+1) =1

=>  hai số tự nhiên liên tiếp luôn là hai số nguyên tố cùng nhau

b) 

Gọi ƯCLN( 2n+5;3n+7) la  d 

=> 2n+5 chia hết cho d ; 3n+7 chia hết cho d 

=> 3.(2n+5) chia hết cho d ; 2.(3n+7) chia hết cho d 

=> 6n+15 chia hết cho d ; 6n+14 chia hết cho d 

=> 6n+15-(6n+14) chia hết cho d 

=> 1 chia hết cho d 

=> d= 1

=>  ƯCLN( 2n+5;3n+7)=1

=>2n+5 và 3n+7 là hai số nguyên tố cùng nhau

11 tháng 2 2020

Hai số lẻ liện tiếp có dạng 2n + 1 và 2n + 3 ( n thuộc N )

Đặt d thuộc ƯC ( 2n + 1; 2n + 3 ) ( d thuộc N* ) => 2n + 1 chia hết cho d và 2n + 3 chia hết cho d

Vậy ( 2n + 3 ) - ( 2n + 1 ) chia hết cho d <=> 2 chia hết cho d thuộc Ư( 2 ) <=> d thuộc {1; 2}

Nhưng d khác 2 vì d là ước của số lẻ. Vậy d = 1

=> Vậy 2 số lẻ liên tiếp nguyên tố cùng nhau

Gọi 2 số lẻ liên tiếp là:2k+1;2K+3\(\left(k\inℕ\right)\)

Gọi (2k+1,2k+3)=d\(\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}2k+1⋮d\\2k+3⋮d\end{cases}}\)

\(\Rightarrow\left(2k+3\right)-\left(2k+1\right)⋮d\)

\(\Rightarrow2⋮d\Rightarrow d\in\left\{1;2\right\}\)

Vì 2k+1 và 2k+3 lẻ nên chúng không chia hết cho 2 do đó d=1

Suy ra (2k+1,2k+3)=1 hay 2k+1 và 2k+3 nguyên tố cùng nhau(đpcm)