K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2019

Từ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a\cdot b}{c\cdot d}=\frac{a^2-b^2}{c^2-d^2}\left(đpcm\right)\)

27 tháng 3 2019

đặt \(\frac{a}{b}\)=\(\frac{c}{d}\)=k =>a=bk; c=dk

xét: \(\frac{ab}{cd}\)=\(\frac{bk.b}{dk.d}\)=\(\frac{b^2}{d^2}\)

\(\frac{a^2-b^2}{c^2-d^2}\)=\(\frac{b^2k^2-b^2}{d^2k^2-d^2}\)=\(\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}\)=\(\frac{b^2}{d^2}\)

=> \(\frac{ab}{cd}\)=\(\frac{a^2-b^2}{c^2-d^2}\)đpcm

tương tự

xét:  \(\left(\frac{a+b}{c+d}\right)^2\)=\(\left(\frac{bk+b}{dk+d}\right)^2\)=\(\left(\frac{b\left(k+1\right)}{d\left(k+1\right)}\right)^2\)=\(\frac{b^2}{d^2}\)

\(\frac{a^2+b^2}{c^2+d^2}\)=\(\frac{b^2k^2+b^2}{d^2k^2+d^2}\)=\(\frac{b^2\left(k+1\right)}{d^2\left(k+1\right)}\)=\(\frac{b^2}{d^2}\)

=> \(\left(\frac{a+b}{c+d}\right)^2\)=\(\frac{a^2+b^2}{c^2+d^2}\)đpcm

7 tháng 10 2019

Ta có \(\frac{a}{b}=\frac{c}{d}\) => \(\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

=>\(\frac{a}{c}.\frac{b}{d}=\frac{a-b}{c-d}.\frac{a-b}{c-d}\)

=>\(\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\left(đpcm\right)\)

7 tháng 10 2019

Ta có:

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a}{c}.\frac{b}{d}=\frac{a-b}{c-d}.\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a}{c}.\frac{b}{d}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

Vậy khi \(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\left(đpcm\right)\)

Chúc em học tốt nhé!

11 tháng 11 2018

làm con phải hiếu

11 tháng 11 2018

Tôi chỉ gợi ý thôi. Bạn đặt tỉ lệ thức đã cho bằng 1 số k nào đó

30 tháng 7 2019

#)Giải :

Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}\left(1\right)\)

Lại có : \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\left(\frac{a+b}{c+d}\right)^2=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\left(2\right)\)

\(\Rightarrowđpcm\)

Bạn tham khảo ở đây : https://olm.vn/hoi-dap/detail/66012452128.html

3 tháng 12 2019

C1 : \(\text{Đặt }\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

\(\Rightarrow VT=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\frac{b^2.\left(k+1\right)^2}{d^2.\left(k+1\right)^2}=\frac{b^2}{d^2}\left(1\right)\)

\(VP=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\left(2\right)\)

Từ (1) và (2) => đpcm

10 tháng 9 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Theo tính chất dãy tỉ số bằng nhau :

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)

=> \(\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2\)\(=\left(\frac{a+b}{c+d}\right)^2\)

=> \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\left(\frac{a+b}{c+d}\right)^2\) ( 1 )

Theo tính chất dãy tỉ số bằng nhau :

=> \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)( 2 )

Từ ( 1 ) và ( 2 )

=> \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)

10 tháng 9 2018

Ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)( tình chất của dãy tỉ số bằng nhau)

\(\Rightarrow\frac{a^2}{c^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\left(\frac{a+b}{c+d}\right)^2\) (1)

Lại có:\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)( tính chất của dãy tỉ số bằng nhau )

\(\Rightarrow\frac{a^2}{c^2}=\frac{a^2+b^2}{c^2+d^2}\)(2)

Từ (1) và (2) ta có \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)