Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: Tam giác ABC là tam giác vuông cân
=> AB=AC %%-
Mặt khác có: ˆBAH+ˆKAC=90oBAH^+KAC^=90o
mà ˆBAH+ˆHBA=90oBAH^+HBA^=90o
=>ˆHBA=ˆKACHBA^=KAC^@};-
Lại có:Tam giác HBA vuông tại H và tam giác KAC vuông tại K ~O)
Từ %%-;@};-;~O) => tam giác HBA = tam giác KAC(Ch-gn)
=>BH=AK(đpcm)
Ta có:AM là trung tuyến của tam giác cân => AM cũng là đường cao
ˆMAH+ˆAEM=90oMAH^+AEM^=90o
Mặt khác: ˆMCK+ˆKEC=90oMCK^+KEC^=90o
mà ˆKEC=ˆAEMKEC^=AEM^
=>ˆMAH=ˆMCKMAH^=MCK^
=> Tam giác AHM=tam giác CKM (c.g.c) vì
Có:AM=MC(AM là trung tuyến ứng với cạnh huyền)
AH=CK (cm trên)
ˆMAH=ˆMCKMAH^=MCK^
=>MH=MK và ˆCMK=ˆAMHCMK^=AMH^
Ta có: ˆAMH+ˆHME=90oAMH^+HME^=90o(AM là đường cao)
Từ ;=> ˆCMK+ˆHME=90oCMK^+HME^=90o
=> Góc HMK vuông
Kết hợp ;=> MHK là tam giác vuông cân
A B C M N
∆ABC có M là trung điểm của BC.
Trên tia đối của tia MA lấy điểm N sao cho MN = MA.
Ta có:
ےAMB = ےNMC (đối đỉnh)
BM = CM (giả thiết)
MA = MN (dựng hình)
Suy ra: ∆MAB = ∆MNC (c.g.c)
Suy ra: NC = AB và ےMBA = ےMCN
Do ےMBA = ےMCN nên AB // NC
Suy ra ےBAC + ےACN = 180
Ta có: ےBAC = 90 nên ےACN = 90
=> ∆ABC = ∆CNA (c.g.c) vì AC là cạnh chung
AB = NC (cmt) và ےBAC = ےACN = 90
=> AN = BC
=> AM = \(\frac{1}{2}BC\)
=>CMT
a, T/g AMC= t/g BMD(c-g-c)
b,T/g AMC= t/g BMD(c-g-c) \(\Rightarrow\widehat{DBM}=\widehat{ACM}\) mà chúng ở vị trí so le trong \(\Rightarrow BD\)song song AC
c, Diện tích tam giác ABC là : (3.4):2=6(cm) (1) hay (BC.AM):2(2) ;Áp dụng đlí Py-ta-go vào tam giác ABC ta được BC=5cm (3)
Từ (1);(2);(3) \(\Rightarrow\)5.AM=12 \(\Rightarrow AM=\frac{12}{5}=2,4cm\)
d, Khoảng cách từ đỉnh A đến trong tâm G là \(\frac{2}{3}\)
Hok tốt (Hình dễ tự vẽ nha)
Ta có: AM là trung tuyến của \(\Delta ABC\).
- Nếu \(AM>\frac{1}{2}.BC\) \(\Rightarrow AM>BM=CM\).
+) \(AM>BM\Rightarrow\widehat{B}>\widehat{BAM}\Rightarrow\widehat{B}=\widehat{BAM}+x^o\)(1). Tương tự, ta có : \(\widehat{C}=\widehat{MAC}+y^o\)(2)
Lại có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)(tổng 3 góc trong 1 tam giác)
Từ (1) và (2) \(\Rightarrow\widehat{A}+\left(\widehat{BAM}+\widehat{MAC}\right)+x^o+y^o=180^o\)
\(\Rightarrow2.\widehat{A}+x^o+y^o=180^o\)
\(\Rightarrow\widehat{A}=\frac{180^o-x^o-y^o}{2}=90^o-\frac{x^o+y^o}{2}< 90^o\)
\(\Rightarrow AM>\frac{1}{2}BC\Leftrightarrow\widehat{BAC}< 90^o\)(đpcm).
P/S: Bạn tự vẽ hình nha ^_^!
Từ M kẻ \(MH\perp AC\) (H thuộc AC) ta có
\(MH\perp AC\)
\(AB\perp AC\)
=> MH//AB (cùng vuông góc với AC) (1)
BM=CM (2)
=> AH=CH (trong tam giác đường thẳng // với 1 cạnh và đi qua trung điểm của 1 cạnh thì đi qua trung điểm cạnh còn lại)
Trong ta giác AMC có
\(MH\perp AC;AH=HC\) => tam giác AMC cân tại M (ta giác có đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)
=> AM=CM mà CM=BM => AM=BM=CM \(\Rightarrow AM=\frac{1}{2}BC\)