K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
A B C M H K P Q D E x y
a) Xét \(\Delta\)AMC và \(\Delta\)AHB có: ^ACM = ^ABH (=450); AC=AB; ^MAC = ^BAH (Cùng phụ ^BAM)
=> \(\Delta\)AMC = \(\Delta\)AHB (g.c.g) => AM=AH (2 cạnh tương ứng). Tương tự: AM=AK
=> AH=AK=AM. Hay AH=AK=1/2.HK (đpcm)
b) Gọi D và E lần lượt là hình chiếu của A trên MH và MK.
Xét \(\Delta\)HMK: MA trung tuyến (Do DH=AK), MA=AH=AK; MA vuông góc HK
=> \(\Delta\)HMK vuông cân tại M => ^HMK = 900 ; MA là phân giác ^HMK.
Xét ^HMK: MA là tia phân giác; AD và AE vuông góc MH; MK => AD=AE
Dễ thấy: ^DAE = 900 (Vì ^ADM = ^AEM = ^EMD = 900) => ^DAP = ^EAQ (Cùng phụ ^DAQ)
Xét \(\Delta\)ADP và \(\Delta\)AEQ có: ^ADP = ^AEQ (=900); AD=AE; ^DAP = ^EAQ (cmt)
=> \(\Delta\)ADP = \(\Delta\)AEQ (g.c.g) => AP=AQ (2 cạnh tương ứng).
Từ đó: \(\Delta\)PAQ vuông cân tại A. Dễ dàng chỉ ra PQ // BC (đpcm).
Cách 2: chứng minh phần b:
Xét tg HMK
có: HA = AK ( chứng minh phần a); \(MA\perp HK⋮A\)(gt)
=> tg HMK cân tại M ( định lí)
=> HM = MK (t/c)
Xét tg ABM và tg ACK
có: AB = AC(gt); ^ABM = ^ACK ( dễ chứng minh ^ABM = ^ACK = 45 độ); ^BAM = ^CAK ( khi cộng với ^MAC đều = 90 độ)
=> tg ABM = tg ACK ( c-g-c)
=> BM = CK ( 2 cạnh t/ ư)
Xét tg BMH vuông tại B và tg CKM vuông tại C
có: BM = CK (cmt); MH = KM (cmt)
=> tg BMH = tg CKM ( cgv-ch)
=> ^BHP = ^ CMQ ( 2 góc t/ ư)
HB = MC ( 2 cạnh t/ ư)
Xét tg HBP và tg MCQ
có: ^HBP = ^ MCQ ( dễ chứng minh ^HBP = ^MCQ = 45 độ); HB = MC (cmt); ^BHP = ^CMQ (cmt)
=> tg HBP = tg MCQ ( g-c-g)
=> BP = CQ ( 2 cạnh t/ ư)
=> AP = AQ ( = AB- BP = AC - CQ)
và ^PAQ = 90 độ (gt)
=> tg PAQ vuông cân tại A ( định lí)
=> ^APQ = 45 độ
=> ^APQ = ^CBP ( = 45 độ)
mà ^APQ và ^CBP đồng vị
=> PQ // BC ( định lí)
...
xl bn! bn theo cách bn kia vẫn đúng đó, mk chỉ thêm 1 cách nữa thôi!